Components

Content owned by david.jones

Detector Array Properties

The properties of the Aladdin III InSb detector array for the GNIRS science channel are given in Table 1 below.

Read Modes

There is a tradeoff between the detector read noise and the time required to read out the array. The best choice depends on the brightness of the object and the background at a given wavelength (see the Observing Strategies page for more guidance).


Filters

Photometric Filters

The filters listed below may be used for photometry on the Mauna Kea system.

Order-blocking Filters

The filters listed below are used during spectroscopy for order-blocking and (with the exceptions of M, L, and XD) for acquisition.

Acquisition Filters

Acquisition filters are defined in acquisition observation sequences - see the OT Details and Acquisition pages for more information.

Neutral Density Filters

A neutral density filter used for acquisition of very bright objects is also available for use (currently with the H and H2 filters only).


Slit Properties

The spectrograph entrance slit is defined by two mechanisms. The width of the slit is defined by the one of several slits in a photo-etched mask located in the slit slide; the length of the slit is defined by one of several openings in the decker slide.

The slit mask is located at the re-imaged focal plane, while the decker apertures are slightly ahead of it, and therefore somewhat out of focus (by a few pixels). The decker sizes are matched to the full width of the array in long slit mode, or to the minimum spacing between adjacent spectra when the cross-dispersing prisms are used.

Width

Lengths

Throughputs

Orientation

Slit orientation: With GNIRS mounted on a side port of Gemini North and for a slit position angle of 90 degrees, further east corresponds to lower column numbers. For a slit position angle of 0 further north corresponds to lower column numbers.


Prisms and XD Spectroscopy

GNIRS contains two prisms designed to enable cross-dispersed spectroscopy in the 0.9-2.5 µm region. One, known as SXD, was designed for use with the short blue camera (0.15"/pix), and the other, known as LXD, for use with the long blue camera (0.05"/pix). The prisms disperse incident light in the direction orthogonal to that of the gratings, which allow grating orders 3-8 to appear at different locations on the array, as shown here. The prisms are made of SF57 glass and have excellent transmission across almost the whole wavelength range but attenuate slightly at the long wavelength end of the K-window.

Because the prisms spread the orders along the slit direction, it is necessary to use a much shorter slit than can be used in the single order / long slit mode. The slit in use with the prism for the short blue camera prism has a length of 7.0 arcsec; that for the long blue camera has a length of 5.0 arcsec. The long blue camera can also be used with the SXD prism, and the 7.0" slits, but then can only cover orders 3-5 (J, H, and K - but may miss the very shortest part of the J band). If the science does not require the shorter wavelength orders, the user can make use of this configuration which gives increased spatial coverage and greater flexibility (e.g. in nodding along the slit), with only a small degradation in spectral resolution.

Atmospheric refraction, which causes a wavelength dependent smearing of the light from the target along the elevation angle (sometimes called the parallactic angle), is always an issue at zenith angles greater than 45 degrees for the long camera and can be an issue for the short camera, particularly when the narrowest slits are used. The effect of differential refraction is shown in this table. Note that roughly 2/3 of the differential refraction in the 1.0-2.5 µm region occurs between 1.0 µm and 1.5 µm, and that the effects of flexure between the guider and GNIRS also need to be considered when selecting the position angle of the slit.

The prisms degrade the spectral resolution when used with the long blue camera at the highest spectral resolutions (i.e., with the narrowest slit - 0.10 arcsec). The degradation has been measured to be 15% with the LXD prism and 25% with the SXD prism. With wider slits the degradation is much less.

The following table summarizes the properties of each cross-dispersed mode described above.

GNIRS in XD Mode
Configuration
camera+prism
Slit Length
(arcsec)
orders observed wavelength
coverage
spectral resolution
with 2-pix wide slit
SB (0.15") + SXD 7.0 3-8 0.9-2.5µm 2.0 pix
LB(0.05") + LXD 5.0 3-8 0.9-2.5µm 2.3 pix
LB(0.05") + SXD 7.0 3-5 1.2-2.5µm 2.5 pix

The GNIRS grating turret contains three gratings, each with an effective first order blaze wavelength of 6.6 µm. The wavelength diffracted with peak efficiencies then correspond fairly well to the atmospheric windows centered at 5, 3.5, 2.2, 1.65, and 1.25 µm (M, L, K, H, J) for orders 1 through 5 respectively. The blocking filters used for these orders cover most or all of the free spectral ranges of the individual orders. A filter for order 6 (1.1 µm, called X) is also available.

The coverages and resolving powers provided by the gratings are tabulated below for the short (0.15"/pix) and long (0.05"/pix)  blue and red cameras. The blue cameras are used in the XJHK bands, the red cameras in the LM bands. The resolving powers (λ / Δλ) in the table are for 2-pixel wide slits. Wider slits are available, see the list of slits. Note that the wavelength coverage within an order does not depend on the central wavelength setting, and that the resolving power within an order increases with wavelength. Note also that the resolving power depends is proportional to 1/(slit width) for sources that fill the width of the slit; the values of R in the table are for the 0.3" slit with the short cameras and for the 0.10" slit with the long cameras and are the highest ones achievable.

Grating
(l/mm)
Order - Band Blocking Filter Range (microns) Short camera (0.15"/pix), 0.30" slit Long camera (0.05"/pix), 0.10" slit
Coverage (microns)(a) Resolving power
(2 pix wide slit)(b,c)
Coverage (microns)(a) Resolving power
(2 pix wide slit)(b,c)
10.44 6 - X (1.10µm) 1.03-1.17 (d) (d) 0.332(f,g) ~2,100
10.44 5 - J (1.25µm) 1.17-1.37 (d) (d) 0.398(f,g) ~1,600
10.44 4 - H (1.65µm) 1.47-1.80 (d) (d) 0.497(f,g) ~1,700
10.44 3 - K (2.20µm) 1.91-2.49 (d) (d) 0.663(f,g) ~1,700
10.44 2 - L (3.50µm) 2.8-4.2 (d) (d) 0.995 ~1,800
10.44 1 - M (4.80µm) 4.4-6.0(i) (d) (d) 1.99(e) ~1,200
31.7 6 - X (1.10µm) 1.03-1.17 0.331(f,g) ~1,700(h) 0.110(i) ~5,100
31.7 5 - J (1.25µm) 1.17-1.37 0.397(f,g) ~1,600(h) 0.132(i) ~4,800
31.7 4 - H (1.65µm) 1.49-1.80 0.496(f,g) ~1,700(h) 0.166(i) ~5,100
31.7 3 - K (2.20µm) 1.91-2.49 0.661(f,g) ~1,700(h) 0.221(i) ~5,100
31.7 2 - L (3.50µm) 2.80-4.20 0.992 ~1,800 0.332 ~5,400
31.7 1 - M (4.80µm) 4.4-6.0(j) 1.98(e) ~1,240 0.660 ~3,700
110.5 6 - X (1.10µm) 1.03-1.17 0.094(i) ~6,600 0.0316 ~17,800
110.5 5 - J (1.25µm) 1.17-1.37 0.113(i) ~7,200 0.0380 ~17,000
110.5 4 - H (1.65µm) 1.49-1.80 0.142(i) 5,900 0.0475 ~17,800
110.5 3 - K (2.20µm) 1.91-2.49 0.189(i) ~5,900 0.0633 ~17,800
110.5 2 - L (3.50µm) 2.80-4.20 0.280 ~6,400 0.0944 ~19,000
110.5 1 - M (4.80µm) 4.4-6.0(j) 0.575 ~4,300 0.192 ~12,800(k)

Notes:
(a) Important: Wavelength coverages are accurate to +/-2 percent. Wavelength is linear with array pixel number. Actual wavelength settings (specified in the OT by the central wavelength) are accurate to better than 5 percent of the wavelength coverage. E.g., if the requested setting with the 110.5 l/mm grating and short camera has a central wavelength of 3.700 µm, the nominal spectral range delivered will be 3.560 - 3.840 µm, but could be shifted by as much as 0.014 µm either way. Should an observing program require higher accuracy than the above, a note should be added at phaseII.
(b) Values are for the wavelengths in column 2. Values are linear with wavelength within an order; for example, for the 31.7 l/mm grating and the short camera R~1550 at 3.0µm and R~2050 at 4.0µm.
(c) Resolving power depends on 1/(slit width) for sources that fill the slit width; for example, the values of R for a 3 pixel-wide slit are 2/3 the values in the table.
(d) This mode potentially provides R=570 but offers no advantage over R=1700 and is not used in practice.
(e) Not recommended; the next higher resolution grating covers almost the entire accessible wavelength range in the M window and can be used with longer exposure times and significantly lower overheads.
(f) When used in single order (long slit) mode wavelength coverage is broader than bandpass of the blocking filter.
(g) When used with a cross-dispersing prism a complete 0.8-2.5µm spectrum is obtained across five orders (3-8).Efficiency in orders 7 and 8 is low.
(h) Since November 2012 and for the cross-dispersed mode with the 2 pix wide slit only resolving powers are somewhat lower, as follows: X-1400; J-1400, H-1400; K-1300. For cross-dispersion with other slit widths use the table and footnote c.
(i) When used with a cross-dispersing prism 0.1-0.2µm disjoint sections of the 0.9-2.5µm spectrum are obtained in the five orders (3-7). 3-4 wavelength settings are required to provide complete wavelength coverage
(j) Detector does not respond to light at wavelengths greater than 5.4 microns.
(k) Resolving power significantly lower than in other orders (because grating angles corresponding to M band in first order are significantly less than the angles of other bands in their orders).

Components | Gemini Observatory

Error

The website encountered an unexpected error. Please try again later.