GNIRS Phase II (OT) Checklist
You are here
There are many ways to check phase 2 files. However, for people new to GNIRS we suggest the following procedure. This assumes that the observations are set up using the OT automatic templates and/or following the templates in the OT library. NGO technical feasibility checks are carried out at the time of proposal submission, and we assume that problems with the proposed observing configuration/conditions have been sorted out by this point. For more information about GNIRS in the OT, see this page.
- Check the science target spectroscopy observation
- Do the observing conditions match those specified in the proposal? If not, has approval been requested (for better conditions), and will they allow the science to be achieved (for worse conditions)?
- Does the GNIRS component match that specified in the proposal, or will it achieve the proposal's aims anyway?
- Will the exposure time avoid saturation and excessive sky variation/radiation events?
- Is the appropriate read mode being used?
- Has a PWFS2 or AO guide star been defined? Does it fit the criteria for P2 or AO guide stars?
- Does the observation use a sensible dither sequence?
- Is the guide star accessible at all dither positions? For large offsets to blank sky, has the guiding been set to "freeze" in the offset iterator?
- Have flats and (except for the L/M bands) arcs been defined? The "Night baseline GCAL" option under the "Observe" menu in the OT should be used in most cases.
- Does the sequence contain flats and arcs at multiple wavelengths? If so, is the user aware of the caution in the calibration section of this web page?
- Are the observation classes correct? The science observation should be set to "science", and baseline flats and arcs, "nighttime program calibration".
- Check the science target acquisition observation
- Is the target component the same as that in the spectroscopy observation?
- Is this a single, easily-identifiable target that can be acquired without a blind offset? If not, or if the acquisition sequence is otherwise different from the library examples (e.g. two targets on the slit, target offset along the slit to reach a guide star), have appropriate instructions and finding charts been added?
- Is the acquisition setup (filter, sky subtraction, blind offset, etc.) suitable for the target's brightness in the filter in which it is to be acquired?
- Does the GNIRS component match that of the science spectroscopy, except for exposure time, coadds and read mode?
- Is the exposure time appropriate for the target? (In most cases, the exposure times for the slit image should not be changed from the library example)
- Are the slit and decker correct in all steps?
- Has the observation class been set to "acquisition"?
- Check the standard star(s) spectroscopy observation.
- Do the observing conditions match those of the science spectroscopy?
- Are you satisfied with the airmass match between the standard star and science target? The "plot" button in the OT position editor can be used to check this.
- Does the GNIRS component match that of the science target spectroscopy, apart from the exposure time, coadds and read mode?
- Has the observation class been set to "nighttime partner calibration"?
- Does the observation require more than the baseline standard star? If so, have the extra standards been given the class "nighttime program calibration", and an explanatory note added?
- The above science target spectroscopy checks also apply to the standard stars, except that flats and arcs are not usually defined for standard stars.
- Check the standard star(s) acquisition observation
- If this is a baseline standard star, has the class been set to "acquisition calibration"?
- Perform the same checks as for the science target acquisition observation
- For imaging science
- Follow the checks suggested for spectroscopy science and acquisition observations above, except for those referring to arc spectra
- Does the dither pattern for the target fit into the keyhole shaped imaging field (q is the long dimension)?
- If the PI does not intend to prepare sky flats from the science imaging exposures, have imaging flats been embedded in the science observations?
- Do a few general checks
- Does the program fit within the allocated time? If not, have the observations been prioritised and/or an explanatory note added?
- If these observations use the high spectral resolution modes at central wavelengths not covered by the automatic calibrations, has a note been added to instruct the contact scientist to check the flat and arc configurations during the day?
- If there are spectral features of importance at wavelengths within 10% of an edge of the specified wavelength range, add a Note to the OT so that the observer ensures that the grating setting is sufficiently accurate to include them.
- For XD observations, have daytime pinhole flats been defined?