A Model for Computing Astrometry Errors Due to Optical Surface Aberrations

Brent Ellerbroek
TMT Observatory Corporation

Gemini North Adaptive Optics Workshop
Victoria, June 20, 2012
Just as for high-contrast imaging, wavefront aberrations in optical systems place limits astrometric accuracy.

Fourier-domain model developed to estimate this effect.

Results given in terms of sensitivity factors:

\[
\text{(micro arc seconds of astrometry error)/(nm of wavefront error)}
\]

Analytic formulas developed for three special cases:

- Error due to static aberrations after calibration a reference source grid.
- Error due to quasi-static aberrations after calibration via field stars.
 - For example, DM figure drift in an MCAO system such as GeMS.
- Error due to beam translation on surfaces because of line-of-sight dithers or image derotation.

First sensitivity factors computed for Gemini/TMT are not too tight!
Sample Result: Impact of Quasi-Static DM Figure Drift for Astrometry with TMT

- D=30m
- 30” FoV
- 11.2 km DM conjugate range
- 0.5m actuator pitch
- Max. sensitivity of ~2.5 μas/nm with global tip/tilt calibration
- ~0.15 with plate scale calibration