AO science & perspectives @ ESO

Norbert Hubin European Southern Observatory

VLT AO instruments in 2012

VLT AO instruments in 2013-2018

Science with the AOF in ground layer mode

Cerro Paranal, Seeing from SLODAR & MASS

Enable more observations and specifically surveys in good tc best seeing conditions

- AOF will provide
 - For MUSE: 50% ≤ 0.45" at 750nm (EE-gain ≈ 2)
 - For Hawk-I: $50\% \le 0.3''$ at K-band (EE-gain ≈ 1.7)
 - Fainter magnitude limits for point sources
 - Better spatial resolution for extended sources

7.5'

MUSE-WFM spectroscopy in crowded stellar fields "DAOPHOT in 3D"

Complementing HST - Hawk-I K-band globular clusters around NGC1399

MUSE-WFM galaxy v-maps in deep fields – [OII] at z≈1

MUSE + AOF science potential

Study of crowded stellar field

 $\begin{array}{c} \text{Lyman} \ \alpha \ \text{emission} \ \text{from high} \\ \text{z galaxies} \end{array}$

Ultra deep field combined with gravitational lensing

Multi-Object Spectroscopy

Need pre imaging
Need pre selection
Limited discovery space

MUSE 3D Deep Fields

Get everything!

- Eliminates pre-imaging
- Eliminates pre-selection
- Observe only once
- Attack multiple science topics simultaneously
- Large discovery space for serendipitous sources

MUSE 3D deep field

One deep field (80 hours) 450 galaxies 6.7

- High z Ly α emitters
 - Reionization
- Intermediate z galaxies
- Fluorescent emission
- Feedback processes
- Gravitational lensing
- Spatially resolved spectroscopy
- Late forming pop III
- Active galactic nuclei
- Merger rate
- Development of dark halo

- Stellar dynamics at 0.05" scales black hole masses & formation scenarios
- Optical spectra give stellar populations and gas properties 'for free'
- Low background allows low-surf. brightness objects

MUSE Instrument Overview

- Integral Field Spectrograph
- Optimized for ESO AO Facility
 - but can run without AO
- Two modes only
 - WFM: Wide Field Mode
 - 0.2 arcsec, 1x1 arcmin²
 - Spatial resolution
 - Non AO: seeing
 - AO: 0.3-0.4 arcsec
 - NFM: Narrow Field Mode
 - only with AO
 - 0.025 arcsec, 7x7 arcsec2
 - Spatial resolution
 - 10-20% Strehl ratio

- Spectral characteristics
 - ¥65-930 nm simultaneous
 - ≻ R~3000
- Data volume
 - > 400 10⁶ pixels
 - 90,000 spectra in one exposure

AOF status: DSM & Lasers & LTS

+ES

ERIS:

Enhanced Resolution Imager & Spectrograph

- New AO fed instrument for VLT, replacing NACO
- Integrated with VLT AOF at Cassegrain: DSM + Laser Guide star
- Two science instruments:

E

- Integral Field Unit Spectrograph (upgraded SPIFFI)
- > New infrared imager (taking over NACO)
- High Strehl AO system at the telescope in 2016

- Disk Science: NIR SCAO imager with LGS + IR WFS
 - > Low- and intermediate-mass young stellar objects \rightarrow High contrast
 - Massive star formation: disk or no disk?
 - Debris disks

(VLT YEPLIN + NACO)

- Exoplanets: Thermal infrared SCAO imager & R=500 spectro (complement of SPHERE)
- Starburst Clusters & Initial Mass Function: high order NIR SCAO imager with LGS & IR WFS
- Solar System: Thermal infrared SCAO imager with LGS
 - Asteroids and their multiplicity
 - Satellites of Giant Planets
 - Atmospheres and rings of Giant Planets
- Galactic Center: NIR SCAO imager+ spectro with LGS+ IRWFS
- AGN & Super Massive Black Holes: SCAO imager & spectro with LGS + IRWFS
- Distant (high-z) galaxies: NIR SCAO imager & spectro with LGS
 - Galaxy morphology resolved structure and colors

Central 300300 pc⁴of the active nucleus in NGC 7582⁴

ERIS Top level requirements

UT4 + AOF + Cassegrain +SPIFFI + NACO-like	
AO modes	NGS, LGS + LO sensor, SE, noAO
AO performance	SR (NGS>80%, LGS >65%) Sky Coverage >30% at GP Max 5% SR loss due to instrument (flexures)
IR Camera modes	Imaging J-K (13-27 mas/pix) Imaging L-M (27 mas/pix) Pupil plane coronagraphy (L-M) SAM J-M > 24 filters
IR Camera Performance	FoV >45" \varnothing Low distortion: < 1.5mas on 7"x7" FoV Low emissivity: 0.5*($\varepsilon_t + \varepsilon_s$) High transmission; >65% in J-K Low noise: DC Noise=0.3 Total Noise
"Re-use" SPIFFI	Minimize changes
ERIS-SPIFFI Performance	Maintain or improve transmission Maintain or improve open-shutter time

▄ #= ┿╾ ▋▋ ▀▀ ▋▌ ══ ᆙ┛ 홃═ #■ !+! >:::

LGS WFS arm

- > SH 40x40, CCD220 assembly, up to 1.2kHz
- LGS focus & pupil control, pupil derotation
- Low order Visible sensor (T/T+Foc)
- NGS WFS arm
 - > Pyramid based visible λ 40x40 \rightarrow 8x8 sub-ap., CCD220 1.2kHz
 - Serving also as low order sensor for LGS
 - Field selecting, pupil control, ADC, pupil derotation

SPHERE Science objectives

- High contrast imaging down to planetary masses
- Investigate large target sample: statistics, variety of stellar classes, evolutionary trends
- Complete the accessible period window
- First order characterization of the atmosphere (clouds, dust content, Methane, water absorption, effective temperature, radius, dust polarization)
- → Understand the planetary system origins

SPHERE Science objectives

SPHERE High level requirements

- Scientific requirements
 - \checkmark Gain up to 2 orders of magnitude in contrast as compared to current instrumentation
 - \checkmark Reach short separations: 0.1" 3" (1- 100AU)
 - \checkmark Survey a large number of targets
- > High contrast detection capability
 - ✓ Extreme AO (turbulence correction)
 - \checkmark feed coronagraph with well corrected WF
 - ✓ SR ~ 90% in H-band
 - ✓ Coronagraphy (removal of diffraction pattern)
 - \checkmark high dynamics at short separations
 - \checkmark Differential detection (removal of residual defects)
 - \checkmark calibration of non common path aberrations
 - \checkmark pupil and field stability
 - \checkmark smart post processing tools
- High sensitivity
 - \checkmark optimal correction up to V ~ 9-10

= II 🖄 🛌 := += II == II == 🔯 == := EI 💥 🛀

SPHERE Concept overview

= !! 🖸 🛌 := += !! = !! = !! = 💷 💷 📰 🖽

Unique but challenging ZIMPOL capability

1st light early 2013

═ ▋▌ 図 ┝┙ ╬╡ ┿╸▋▋ ═╸┫┨ ═╸図 조╸╬┫ モ┛ 淋╣ ┕┙

- DRH = Data Reduction and Handling
- Organizes data flow of the SPHERE Survey(s)
- From target lists via observing blocks, raw and reduced data, and search algorithms to candidate data bases
- More than just "data

VLT AO capabilities in construction cover a large range of science requirements and instrument capabilities:

GLAO Large FoV NIR imaging, small FoV visible 3D spectroscopy

Laser Tomography AO in the visible for 3D spectroscopy

- High Strehl ratio & High contrast Mid-NIR imaging & 3D spectroscopy
- High contrast both in the NIR and in the visible for bright objects
- Missing: Medium FoV, diffraction limited MCAO instrument... for now...
- Science cases calls for challenging AO concepts & techno.
 - Better Sky coverage and higher performance availability (LGS!)
 - Larger FoV & better PSF uniformity (photometry & astrometry)

 - Higher contrast at small separation for large set of objects
 - Well focused science cases allow for AO design compromises to converge to more affordable & less risky instruments....