
GPP Technology Choices
Replacing a Quarter Century of Cruft



Service Architecture
● GPP is structured as a collection of client web apps communicating with 

cloud-deployed services using GraphQL queries.
● Allows services to evolve independently and simplifies upgrades.
● Each service may utilize a database to support its persistence requirements.
● Services may use other GPP services or even external services to fulfill 

requests.





Core Programming Language and 
Development Paradigm



Functional Programming

● Building software by composing and applying pure functions, avoiding 
shared mutable state.

● A declarative style of programming where expressions are employed rather 
than imperative statements.

● Why 
○ Pure functions are easier to reason about and to test.
○ Encourages reuse yielding reliable, modular systems.

● Alternatives
○ Traditional imperative programming (for example in Java).
○ In our experience building large systems on top of shared mutable state leads to serious 

maintenance issues.



Scala

● A statically typed, functional programming language on the JVM.
● Why 

○ Static typing helps avoid bugs and simplifies long-term maintenance.
○ Builds on the Gemini software team’s years of experience on the JVM.
○ Robust ecosystem with ready-made solutions to many common issues.

● Alternatives
○ Eta and Frege are other statically typed functional program languages that target the JVM but 

both are more similar to Haskell, which is less familiar to the high-level group.
○ Neither has the level of adoption that Scala enjoys.
○ Kotlin + Arrow might be an alternative, but it appears to be less mature and as a team we 

have invested many years in Scala.



Typelevel Ecosystem

● Suite of modular, pure functional Scala libraries that work together including

Cats Abstractions for FP in Scala

Cats-Effect IO Monad and effect handling in general

Doobie Functional database access

FS2 Stream Processing

Http4s Functional HTTP client and server library

Monocle Simplifies reading and updating hierarchical, immutable structures



Typelevel Ecosystem

● Why
○ Scala directly supports functional programming at a superficial level.
○ A foundational library providing abstractions is required (e.g., Functor, Applicative, Monad 

typeclass definitions, syntax, etc.)
○ The Typelevel Cats library provides this foundation.
○ Having selected a foundation, using functional building blocks that assume the same 

foundation makes it easier to piece together code.

● Alternatives
○ Scalaz is the only real “competitor” to Cats but the industry has mostly adopted the Typelevel 

ecosystem.



Front End



Scala.js

● Scala to JavaScript compilation.
● Why

○ Extends Scala to the browser, enabling shared library code across client and server.
○ Static typing in the frontend, simplifying maintenance.
○ Provides interoperability with JavaScript libraries.
○ Freedom to move logic from the backend to the frontend when appropriate.

● Alternatives
○ Clients directly written in JavaScript imply all the computation be relegated to the server, or 

code must be ported and duplicated across both.
○ JavaScript suffers from maintenance issues common to dynamically typed languages in 

general.
○ Languages like TypeScript/PureScript would solve maintenance issues of JavaScript, but 

would also require duplicated code.



Client Side Libraries

React / scalajs-react Front end logic structure

Semantic UI Visual styling

Ag-grid Advanced tables

Aladin Catalog visualization

svg components Instrument visualization



Backend



PostgreSQL

● Free and open source relational database.
● Why

○ Reliable, robust, efficient.
○ Excellent community support.
○ Available as a Heroku service.

● Alternatives
○ Paid alternatives exist but offer no apparent advantages for our needs.
○ Open-source alternatives like MariaDB are available, and would likely suffice, but Postgres is 

more familiar and Heroku (covered later) offers a managed Postgres service.
○ NoSQL options are not compatible with our emphasis on data integrity and structure.



APIs (Communications)



GraphQL

● API query language used by client web apps and between services 
themselves.

● Also offered for one-off advanced-user queries and arbitrary scripts.
● Why

○ Clients can specify exactly the information they require.
○ Simplifies API evolution.
○ Supports subscriptions which allow clients to update upon remote changes.
○ Users may write service queries in any language.

● Alternatives
○ Traditional RESTful APIs are an alternative and may be used in some cases.
○ Client has no control over the result and often receives too much data or not enough 

(requiring additional queries).



Deployment



Heroku

● A continuous and cloud-based deployment service.
● Why

○ Simplifies cloud-platform management over using raw Amazon Web Services.
○ Automates application updates.
○ Provides multiple environments for testing, staging, and production.
○ On-demand resizing and scaling with integrated load-balancing.
○ Tight integration with GitHub for testing and deployment

● Alternatives
○ Amazon Web Services/Google Cloud/Azure offer similar services but expose all the 

complexity of managing servers and infrastructure.
○ Gemini/NOIRLab does not currently offer cloud based hosting and no managed services over 

raw VMs.
○ These alternatives become considerably more expensive considering management costs.


