
Gemini Program Platform
Software Conceptual Design

Version 1.1 - Last updated: 2019 December 4

1 Introduction
This document proposes a software architecture for implementing the proposals in Section 4 of
the Operational Concepts Document. We propose a set of communicating software
components, broken into two main categories: user-facing applications, and back-end support
systems. We describe the system as a whole, followed by descriptions of the primary functions
of each component. We conclude by proposing a cloud-based development and deployment
strategy, to provide the physical runtime environment for GPP.

2 Software Concept
 The GPP will offer an array of special-purpose UIs (User Interfaces) for external PIs and
operations staff members. Supporting these tools is a centralized database and a collection of
special-purpose services.

Here, a user interface application is shown communicating with two services and a central
program database via their public APIs. Services will also use the public APIs of other services.
A reporting application might bypass the public API and directly query the database, and query
access should also be available to users.

The particular constellation of applications and services envisioned for this project is depicted
below.

1 of 12

User facing services (yellow) provide user interfaces intended to be used by PIs, NGOs and/or
science and operations staff. Support services (white) provide API access primarily for
programmatic use. Internal support services (red) interact with Gemini facility hardware and
must be installed on-site. External services (gray) provide necessary functionality but are not
controlled by Gemini. Dotted lines indicate communication between systems.

A brief description of each service is provided in the next section. Each description enumerates
the service’s primary functions, each of which is either

A. new or substantially improved, in which case we reference a technical proposal from
the OCD (marked [P-3] for example); or

B. existing and reasonably necessary (see OCD §1), and will have continuing support
(marked [CS]); or

C. a consequence of the system architecture (marked with [A])

Note that technical proposals [P-27, P-28] apply across the system architecture and are not
associated with specific primary functions.

While this document is focused on the conceptual design, prototyping of key services that are
independent of the operational concept has been ongoing for at least a year. A number of
important implementation decisions have been tentatively taken and are a useful indication of

2 of 12

the progress that has already been made. We highlight these implementation decisions as
shown below.

GPP will be implemented in the Scala programming language in a functional style. This
decision is based upon negative experience with maintaining loosely typed imperative
programs at Gemini. Our experience with functional programming in Scala over the last
several years has confirmed that it generally yields reliable systems that are easier to
maintain.

GraphQL has been selected for service APIs because it is convenient for programmatic
access even by non-expert developers, allows the client to specify just the subset of
data that is needed, and permits the API to evolve without explicit versioning.

2.1 User Facing Applications
Making use of the cloud-based services are a collection of (mostly) web applications. The
Program Tool is intended for PIs and NGOs as well as Gemini staff, while all others are for
internal use.

To take advantage of the Scala program models developed for use throughout the
remainder of the system, all user interfaces will leverage Scala-js. Scala-js combines
strong static typing and interoperability with JavaScript libraries and has been
successfully employed in a recent project at Gemini, the predecessor of the Execution
Tool discussed below.

2.1.1 Program Tool
The Program Tool is the main end-user web application for external PIs, NGOs and staff. It
assists in proposal preparation, evaluation, and management; as well as engineering tasks.

Primary functions:

● Provide a modern, intuitive web-based user-interface. [P-1, P-2, P-5]

● Allow users to experiment anonymously by specifying science goals/constraints and
viewing compatible instrument configurations and estimated time required. [P-3, P-6,
P-7, P-8, P-9]

● Allow users to promote an experimental program into a persistent program by
authenticating, and provide additional information necessary for proposal submission.
[P-7, P-8, P-9]

● Allow user to specify timing and ordering constraints among observations. [P-12, P-13,
P-14]

● Allow users to submit the program for approval and await time allocation. During this
period most editing features are disabled for PIs. [CS]

3 of 12

https://www.scala-lang.org/
https://graphql.org/
https://www.scala-js.org/

● Allow users to manage programs by making tweaks (such as specifying dither patterns
or additional calibrations), and monitor execution progress. [CS]

● Allow users to visualize the science field, guide stars, and offset positions. [CS]

● Allow users to view archived programs after completion, and use these as templates for
creating new programs. [CS]

● Allow users to view a history of changes. [P-4]

● Automate tedious, error-prone tasks such as specifying the acquisition and science
sequences and defining associated calibration observations. [P-9, P-10, P-11]

● Manage auxiliary files (finding charts for example) related to science programs. [CS]

● Allow staff to set quality assessment status for data sets. [CS]

2.1.2 Execution Tool
The Execution Tool is the main application used for observation execution. It will be an
enhanced version of Gemini’s new Sequence Executor. Primary functions:

● Log weather conditions that cannot be reliably determined from sensors. [P-24]

● View the Scheduler’s suggestions for upcoming observations and select from among
them (or enter an arbitrary observation). [P-21]

● Visualize and execute a sequence, including today’s SeqExec pause/abort, etc. [CS]

● Enter requested feedback during sequence execution as necessary. For example, to
determine when an acquisition completes, whether an exposure time adjustment is
necessary after the first science dataset(s), or when a non-signal-to-noise observation
completes. [A]

● Enter comments that will be interleaved into the execution history. [P-24]

2.1.3 Laser Clearing-House (LCH)
The LCH application manages laser timing windows as determined by requests to the Space
Command authority. The existing LCH application will be adapted to work with the new model
and will gain an API layer so it can be used by other services. Primary function:

● Maintain an up-to-date list of approved observing windows for all active observations,
and make this information available to client applications such as the scheduler. [P-20,
P-23]

4 of 12

2.1.4 Queue Visualization (QViz)
The Queue Visualization application is an interactive reporting tool showing instrument feature
demand and target visibility across the database of science programs. It is used by Gemini
staff as part of facility planning (filter swaps, engineering periods, etc). The existing desktop
application will be adapted to work with the new model. Primary function:

● Provide a visualization showing instrument feature demand and target visibility across
the database of science programs [CS]

2.1.5 Manual Planning Tool (MPT)
The Manual Planning Tool (previously known as the Queue Planning Tool) is a desktop
application used to construct observing plans for a single night. Largely supplanted by the
automated Scheduler in the GPP, it may still be used by Gemini staff for special purpose nights
such as classical runs or instrument commissioning. The existing application will be adapted
to work with the new model. Primary function:

● Visualize a planned night of observing and assist with queue construction, matching
each queue to possible observing conditions. [CS]

2.1.6 Reports
Reports will be available via SQL queries to a read-replica of the observing database, using
available commercial or open-source tooling. The software group will ensure that required
information is available, identify and make recommendations for query tools, and write an initial
set of queries. Primary function:

● Provide software endpoints for arbitrary reporting purposes, and guidance on using
these endpoints. [P-29]

2.1.7 Observing Log (Obslog)
The Obslog provides an overview of the night’s activities, changing weather conditions,
telescope faults, and running commentary from operations staff. Primary functions:

● Provide an integrated interface to view observing events, sky almanac information,
reported faults, and observer notes in a single timeline. [P-24, P-25]

● Provide an interface for manual entry of events including arbitrary observer comments
(optionally private to staff) and observed conditions. [P-24, P-25]

2.2 Support Services
All support services play important roles but two services in particular occupy a central place in
the GPP architecture. These are the Observing Database, where science programs are kept,
and the Scheduler, which suggests which observation(s) should be executed next. The

5 of 12

remainder of the services provide support for specific tasks such as integration time calculation
and automatic guide star search. The following sections provide an overview of each of the
cloud-based services.

2.2.1 Observing Database (ODB)
The ODB stores science programs, execution history, and other information necessary to
support the user-facing applications. It is the central source of truth in the system and its
model is the foundation of most GPP features.

A science program may consist of observations that will ultimately be executed at either site
depending upon target location and required instrument features. For this reason, and
because the scheduler needs a consistent view across all available observations, the GPP
features a single centralized database of science programs.

We have successfully prototyped a relational database ODB implementation using
PostgreSQL. As with other services, end-user applications and tools will access the
database via GraphQL queries.

Primary functions:

● Store program and observing event data in a secure, reliable, and consistent way. [CS]

● Provide software endpoints that allow end users and client applications such as the
Program Tool to retrieve and manipulate program data (such as time account reporting
and corrections). [P-19, P-26, P-29]

2.2.2 Scheduler
The automated Scheduler plays a central role in improving observing efficiency at Gemini,
particularly as we transition to site-independent observations and a single shared observing
database. It examines the pool of available observations and weighs factors such as target
availability, the current weather conditions, program completion, and facility schedules to
suggest the next “best” observation at any time.

While useful regardless, the Scheduler is absolutely required to handle the complexity of
followup urgent or interrupting observations originating from survey telescope (e.g., LSST)
events. Efficiently managing a queue under these conditions without automation is not
possible.

Primary functions:

● Maintain an up-to-date schedule for both telescopes, based on observing conditions,
available resources, and science priorities. [P-15, P-16, P-20, P-21, P-22]

● Provide software endpoints that allow end users and client applications such as the
Execution Tool to retrieve scheduling data. [P-29, A]

6 of 12

https://www.postgresql.org/
https://www.lsst.org/

2.2.3 Single Sign-On (SSO)
All users of GPP services must be authenticated, with the exception of experimental programs
in the Program Tool. Primary functions:

● Authenticate external users via ORCID, or similar open identity/authentication standard.
[A]

● Authenticate internal users via Active Directory. [CS]

● Provide a secure token that can be verified and used by any other GPP service. [A]

● Provide a mechanism to grant and revoke user roles and permissions. [CS]

SSO will maintain a database mapping users to roles, and will issue a Json Web Token
(JWT) containing these roles, for use by other systems. The JWT will be signed with an
asymmetric key, allowing other services to verify authenticity.

2.2.4 Target Database
The Target Database assigns unique identifiers to targets and provides name resolution
services. It provides a cache of names, magnitudes, and coordinates (including ephemerides
via JPL’s horizons). It will provide the answer to the question, “where is target t now”, by
applying proper motion corrections for sidereal targets or interpolating non-sidereal ephemeris
elements. This facility is used broadly but in particular by the Program Tool and the Scheduler.

Primary functions:

● Look up and store target names, magnitudes, and ephemerides using existing catalog
services. [CS]

● Keep target information up to date, ensuring in particular that sufficiently precise
ephemerides are available for both sites, over a reasonable time window (a year into the
future, perhaps). [CS]

● Provide a mechanism for storing user-defined targets. [CS]

● Provide software endpoints to allow end users and client applications such as the
Program Tool and Scheduler to query and manipulate target information. [P-19, P-29,
A]

2.2.5 Automated Guide Star (AGS) Service
The Automatic Guide Star service takes an observation description, a time and an observation
duration and calculates a mapping from particular guiders to guide stars such that the
observation can be executed. It will need the target service to determine where the target and
guide stars will be over the course of the observation. It makes use of the external (to this
project) Gemini Catalog Service to find guide star candidates. While the Gemini Catalog

7 of 12

https://orcid.org/
https://jwt.io/
https://jwt.io/
https://ssd.jpl.nasa.gov/horizons.cgi

Service is currently unavailable outside of Gemini, we will need to make it accessible from
external services.

Primary function:

● Compute guiding configurations. [CS]

● Provide software endpoints to allow end users and client applications such as the
Program Tool to query guiding configurations. [P-29, A]

2.2.6 Integration Time Calculator (ITC)
ITC provides estimated exposure times and signal-to-noise ratio. It is used by the Program
Tool UI, the Scheduler and other services that need to estimate exposure times. Initially this will
be an encapsulated version of the existing Gemini ITC, with a GraphQL API front end.

Primary function:

● Compute exposure times and counts given an instrument configuration, target
information, and a desired final S/N. [P-6, P-7, P-9]

● Provide software endpoints to allow end users and client applications to request ITC
calculations. [P-29, A]

2.2.7 Facility Service
The Facility Service will track instrument and instrument feature (masks, filters, etc.) availability
along with instrument port assignment. In addition to supplying current status, it will track past
and, to the extent that it is known, future availability. The Scheduler presents the Facility
Service with a set of constraints (required filter, mask, etc.) and receives a set of timespans
during which the constraints are met. It uses that information to ensure that only executable
sequences are suggested. In addition, we can compute probability of execution by asking
similar questions spanning the remainder of the semester. AGS also relies on this service
because port assignment can impact the reachability of OIWFS guide stars.

Primary functions:

● Track availability of observatory resources (telescopes, instruments, filters, masks, etc.)
through time, maintaining a historical record. [P-20, CS]

● Provide a user interface so science staff can update resource availability for spans of
time. [CS]

● Provide software endpoints so end users client applications such as the Scheduler and
Program Tool can query resource availability at a point in time. [P-29, A]

8 of 12

2.2.8 Calibration Service
The calibration service determines which calibrations (arc, flat, standard …) are required for a
given data set, and maintains a database of existing calibrations. The Scheduler will make use
of the service to ensure that calibrations are scheduled as necessary.

Primary functions:

● Compute required science calibrations for a given observation. [P-17, P-18]

● Compute required daytime calibrations. [P-18]

● Maintain a database of references to calibration data, to support cases where existing
calibrations can be reused (e.g., longslit baseline standards, twilight flats, biases, etc).
[P-18]

● Provide software endpoints so end users and client applications such as the Program
Tool and Execution Tool can query required calibrations. [P-29, A]

2.2.9 Environmental Monitor (Env)
The Environmental Monitor aggregates weather and other environmental conditions from
available monitors, as well as human input (via the Execution Tool) in cases where automated
data is not available or not reliable. This information is used by the Scheduler. The Env service
reads EPICS channels (see Control System Bridge Service) that publish weather data.

Primary functions:

● Maintain a database of observing conditions, as measured through time. [P-20]

● Record changes as measured by automated environmental monitors. [P-20]

● Provide software endpoints so end users and client applications such as the Scheduler
and Execution Tool can record observed conditions, and query conditions at a point in
time and space. [P-29, A]

2.3 Internal Support Services
Internal support services require direct access to EPICS or other local information, filtering it
and making it securely available offsite.

2.3.1 Instrument Service
The instrument service is the back end for the Execution Tool. It applies configurations to
instruments, records execution events, and collects values required by FITS headers. This
service is currently under development and will require updates to work with the new program
model and database.

9 of 12

https://epics-controls.org/

Primary functions:

● Translate logical sequences into low-level instructions for instruments and related
telescope resources. [CS]

● Monitor events as reported by telescope systems. [CS]

● Provide software endpoints to allow client applications such as the Execution Tool to
execute sequences and monitor events. [A]

2.3.2 Control Systems Bridge
Gemini low-level telescope command, control and status is accomplished via EPICS. Most
facility instrument control systems utilize EPICS as well. Newer instruments like the Gemini
Planet Imager employ the Gemini Instrument API (GIAPI) as an alternative to EPICS. Taken
together, we refer to all of the low-level command, control and status systems as Control
Systems. The Control Systems Bridge exposes low-level information via a web API so it can be
observed by services running in the cloud.

Primary functions:

● Maintain a set of EPICS channels or GIAPI topics that remote applications will be
allowed to monitor. [A]

● Provide software endpoints to allow cloud-based client applications such as the
Environment Service to monitor EPICS channels or GIAPI topics. [A]

3 Deployment Approach
Section 2 introduces the logical system components and their interactions. This section
specifies how these systems will be deployed, monitored, and managed on physical hardware.

3.1 Continuous Deployment
Modern software practices encourage development as a continuous series of minor
improvements, which are less disruptive and encourage a tighter and more effective feedback
loop between users and developers. In support of this practice GPP will adopt a continuous
integration strategy, in which all software changes are automatically verified against the test
suite; and a continuous deployment strategy, in which verified changes are automatically
released to the staging environment for user testing. Promotion from staging to production will
initially require management approval, but may become automatic once we gain confidence
with the deployment process.

10 of 12

https://epics-controls.org/

3.2 Cloud-Based Deployment
It is a requirement that programs be permitted to use instruments at either site, perhaps
chosen based on real-time conditions, and the telescopes must be scheduled together.
Therefore a central, shared system is required at least for scheduling functionality. In addition,
modern software practices tend strongly toward cloud deployments rather than self-hosted
data centers. These factors led us to select a cloud-based deployment model.

We investigated Google Cloud, Microsoft Azure, and Amazon Web Services cloud platforms,
and consulted with industry developers who are using these technologies. They uniformly
advised against using one of the "big" platforms directly, and instead recommended using a
PAAS (Platform as a Service) called Heroku, which hides the complexity of the underlying cloud
platform (Amazon Web Services in this case) and is appropriate for "small" systems such as
GPP. To our knowledge there is no equivalent for Google or Microsoft cloud platforms.

We identified the following desirable properties, all of which are met by Heroku.

● Application-oriented deployment, without the need to allocate and configure physical or
virtual machines. GPP is a small system by industry standards, and current provisioning
solutions such as Kubernetes are much too complex for our use case, however manual
provisioning via ITS service request or a cloud platform console does not meet our
automation requirements. Heroku offers a middle ground, allowing for deployment of an
application without concern for provisioning, in exchange for limited flexibility, without
tying our code to the platform. It will be possible to deploy services unmodified on other
platforms or on Gemini hardware should the need arise.

● Continuous deployment directly from GitHub, without custom tooling. We will build and
stage applications for deployment directly from GitHub, rather than maintaining
in-house deployment infrastructure. Heroku provides this facility, and also deploys test
applications for all proposed changes.

● Multiple environments for test, staging, production. Heroku provides these
environments, with automated deployment of test applications, automated deployment
to staging, and on-demand promotion to production.

● On-demand resizing and scaling with integrated load-balancing. In response to
increase in demand we need the ability to resize our application servers and scale out
multiple replicas of an application, with load balancing. Heroku provides this via their
web and command-line interfaces. Server power and configuration can be updated at
any time, and we pay only for instance we use, prorated to the minute, billed monthly.

● Managed PostgreSQL with managed backups. Heroku provides secure, managed
PostgreSQL databases with managed backups, as well as some other options such as
read replicas which may be helpful in the future.

● Container support. Most of our applications will be built for the Java Virtual Machine (a
hardware abstraction that minimizes the need to tailor software to a specific processor

11 of 12

https://cloud.google.com/
https://azure.microsoft.com/
https://aws.amazon.com/
https://www.heroku.com/
https://kubernetes.io/
https://github.com/
https://www.postgresql.org/

or operating system), but in some cases we may need native components. In these
cases we will need to deploy containers (isolated environments for programs that run
on Linux), and Heroku provides Docker support for this purpose.

● Integrated logging, monitoring, and alerts. System monitoring and cross-service
monitoring is another source of complexity that we wish to avoid. Heroku provides
logging, monitoring, and alerts for applications; as well as offering several add-on
services for systemwide monitoring. Logs are stored in S3 (Amazon’s storage system)
but can also be drained to central syslog if desired.

3.2.1 Cybersecurity
Heroku provides for infrastructure security including access to physical/virtual machines,
storage, and backups; and provision of SSL for encrypted communication. GPP will provide
application-level security to ensure that services are accessible only to
authenticated/authorized users. It is anticipated that authentication itself will be delegated to
Active Directory for internal users and ORCID for external PIs.

All code that is committed to source repositories will be reviewed by the Software department
for cybersecurity impact.

3.3 On-Site Deployment
A small number of GPP sub-systems require direct access to Gemini hardware via EPICS and
GIAPI interfaces, and these will be deployed locally at each site.

● The Instrument Service controls instruments while executing observing sequences and
must be located on-site. Note that its user interface is available remotely.

● The EPICS Bridge connects to the local real-time network and forwards read-only
information to the cloud-based Facility and Environment services.

On-site services will be deployed on local VMs (Virtual Machines) or via VSphere Integrated
Containers, supported locally by the Gemini Information Technology Services group.

12 of 12

https://www.docker.com/
https://aws.amazon.com/s3/

