Science and Future of the Gemini Planet Imager

Quinn Konopacky (UC San Diego) for the GPI Team (PI Bruce Macintosh)
The Gemini Planet Imager (GPI) in a Nutshell

- GPI is an advanced high contrast imager with a high-order adaptive optics system, coronagraph and interferometric calibration unit, all feeding a 1-2.4 μm integral field spectrograph.
- Components built by 7 institutions in the US and Canada.
- GPI achieved first light on Gemini South November 11, 2013
 - Routine operations since 2014B.
GPI has been a scientifically productive instrument utilized by a broad community for Galactic science.

- Two large and long programs and 76 regular programs
 - 50% exoplanets, 33% circumstellar material with polarimetry, 17% other (evolved stars, binaries, etc.)
- Since 2014, 48 peer-reviewed publications, 27 technical publications, 10 PhD theses
 - h-index ~ 20
The Gemini Planet Imager Exoplanet Survey (GPIES) is a statistically-designed experiment to determine the frequency of widely separated gas giant planets.

- Initially a 3 year campaign to survey 600 stars
- Ultimately a 5 year campaign surveying 532 stars
- Commenced November 8, 2014 – last new target observed December 22, 2018
 - Follow-up of a few candidates during 2019 will complete survey

GPIES target star properties
The GPIES team has an advanced, automated data processing infrastructure.

Summit
Quicklook + Logging

Dropbox
Stored and Synced

Data Cruncher
Automated Data Processing

Supercomputers
Reprocess all data

MySQL DB
Metadata Logged

Web Thingie
DB Web Frontend

Realtime Quicklook

Wiki
Collaborative Docs

Slack
Collaboration Chat

Query Data + DQ

Realtime Reductions

Autofill Docs

Chatbot

UC San Diego
Wang et al. 2018 JATIS
The primary goal of the survey was to detect new substellar companions.

GPI/H-band

51 Eridani b, Macintosh et al.
2015
2 – 10 M$_{\text{jup}}$
13.2 ± 0.2 AU

HR 2562B, Konopacky et al.
2016
30 ± 15 M$_{\text{jup}}$
20.3 ± 0.3 AU
The full GPI spectral library is comparable in quality to the best space-based transit spectroscopy.
Orbital monitoring of discovered companions has shed light on system architectures.

HR 8799bcde
Wang et al. 2018

B Pictoris b
Wang et al. 2018

Astrometric Precision ~ 1 mas
Disk imaging and characterization was a fundamental component of GPIES.
With data in hand, we can constrain the occurrence of giant planets as a function of stellar mass and separation.
The GPIES survey has taught us what is required to make fundamental advances in direct imaging in the 2020s.

- With potential peak in planet population right below our separation limit, inner working angle is critical
- Contrast scales with τ_0, which is a function of both r_0 and wind speed – improved AO site alone can offer major gains in sensitivity to lower mass planets
 - Note – 51 Eri b discovered on one of best weather nights of campaign
 - A faster AO system will also offer major contrast improvements
- Performance on faint (I>9) is limited due to AO wavefront sensor sensitivity
- Additional scientific gains can be made by exploring other modes, including both lower and higher resolution spectroscopy
GPI 2.0 – A Facility-Class High Contrast Imaging System in the North for the 2020s

- Propose moving GPI to Gemini North, and in the process performing an upgrade to bring the technology into the current era
- Notional timing
 - Upgrade planning and design happening now through 2020
 - Actual upgrade 2020-2021
 - Back on-sky 2022

 • Note: ELT High-Contrast imagers on-sky ~2030s, HabEX/LUVOIR ~2040
Several upgrade pathways are being explored for GPI 2.0 based on science goals.

- Upgraded wavefront sensor to allow operation to I~14
- New realtime computer based on common architecture with other Gemini AO systems
- Enhanced coronagraphic masks with smaller inner working angle (<0.1") or higher throughput
- Broadband spectrograph mode for simultaneous JHK observations
- A fiber-feed for a separate high resolution spectrograph for characterizing known planets
- A fast infrared camera for ultra-high-contrast imaging and focal-plane wavefront sensing
- Enhanced software environment to provide fast, efficient queue observing
GPI 2.0 Science Case - Distinguishing “Cold Start” vs “Hot Start” Planets

Solid – ‘cold start’ core accretion
Dashed – ‘hot start’ rapid collapse
GPI 2.0 Science Case - Distinguishing “Cold Start” vs “Hot Start” Planets

Simulations by Eric Nielsen
GPI 2.0 Science Case - Imaging Forming Protoplanets and Transition Disks

- GPI 2.0 would have the ability to probe very young targets (~1-3 Myr) to search for forming Jupiters and image transition disk structure
- Taurus (~140 pc away) is challenging from the southern hemisphere
- Improved limiting magnitude unlocks >50 targets in Taurus, including ~2 dozen transition disk disk hosts
Summary

- GPI has been a scientifically productive instrument on Gemini South that has revealed fundamental properties of planet formation and evolution.
- With GPI 2.0 on Gemini North, new, transformative scientific potential will be realized.
 - For more about additional science with GPI, come to “The Future of Ground-Based High Contrast Imaging” Splinter Session on Wednesday, 10-11:30 am, Room 304 (www.highcontrastimaging.rocks)
- GPI 2.0 will offer a technology testbed for the next generation of high contrast imagers being planned for the ELTs.