Ground conjugated AO Simulations

François Rigaut, Gemini Observatory
Ground Conjugated AO:

- GCAO/AO/MCAO relative merits
- Basic limitations and principles
- Performance (Monte-Carlo & Analytical)
Idea very similar to MCAO, but using a single ground conjugated deformable mirror instead.

The ground layer is the strongest.

The FWHM gains are modest, but the field of view much larger than AO/MCAO tailored to different applications.

Performance independent of telescope D

Borderline to use NGS, but LGS available
SNR gain ≈ \frac{\text{#photons obj comp.}}{\text{#photons obj uncomp.}} \times \frac{\text{FWHM obj uncomp.}}{\text{FWHM obj comp.}}

≈ \text{Strehl}_{\text{comp}} \times 0.7 \times \frac{D}{r_0}

Metrics (arbitrary?):

1 → SNR gain \times \frac{\text{FoV}}{\text{FoV(AO)}}

2 → SNR gain \times \frac{[\text{FoV}/\text{FoV(AO)}]}{\text{cost}}
GCAO/AO/MCAO relative merit

<table>
<thead>
<tr>
<th></th>
<th>AO</th>
<th>MCAO</th>
<th>GCAO</th>
<th>Seeing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR gain</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FoV</td>
<td>20”</td>
<td>80”</td>
<td>10’</td>
<td>∞</td>
</tr>
<tr>
<td>Cost (AU)</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Metric1</td>
<td>5</td>
<td>56</td>
<td>1800</td>
<td>∞</td>
</tr>
<tr>
<td>Metric2</td>
<td>5</td>
<td>19</td>
<td>900</td>
<td>∞</td>
</tr>
</tbody>
</table>
Geometry of the Problem
Geometry of the Problem

The effective thickness of the compensated layer depends on:

- seeing
- wavelength (via \(d \))
- Field of view

\[h_{\text{eff}} \approx 2 \frac{r_0}{\theta} \]

For good seeing:

- \(h_{\text{eff}}(K) = 1600 \text{m} \)
- \(h_{\text{eff}}(V) = 275 \text{m} \)
Actuator Density
(Analytical approach)

- Average FWHM at V band versus the diameter of the field of view for actuator densities of:
 - 25cm (lower solid)
 - 50cm (dot)
 - 100cm (dash)
 - Pachon C_n^2 profile & r_0
Wavelength dependency
(Analytical approach)

Natural (straight upper lines) and Compensated (lower curves) FWHM averaged across field of view:

- Bands:
 - V (solid)
 - J (dot)
 - K (dash)

- Cerro Pachon Cn² profile
- Actuator density = 1m.
Developed a new AO simulation code (Yorick based)
Handles any number of DMs (PZT/bimorph) at any altitude, any number of WFSs (SH/Curvature) at arbitrary location in the field. Cone effect included. Only simple least square implemented (upgrade).
Include most of AO effects (fitting, aliasing, servo-lag, anisoplanatism, noise)
Goal here is to validate the analytical results and investigate:
- dependence upon telescope diameter
- dependence upon number of guide stars
- dependence upon compensated field of view
- dependence upon the wavelength, Cn2 profile, etc...
- Uniformity and shape of the PSF across the field
Performance vs Field of View
(Monte-Carlo Simulations)

- **Average FWHM (mas) vs FoV**
- **rms FWHM (mas) across FoV**

Conditions:
- $\lambda = 1.25\, \mu m$
- Seeing(500nm)=0.5”
- Pachon profile (64% @ ground level)
- 8-m telescope
- 50cm pitch
- 10 WFSs
- GS placed on a circle
- No AO results: FWHM = (400± 14) mas
- Checked telescope diameter has little impact
Performance vs Field of View
(Monte-Carlo Simulations)

Conditions:
- $\lambda = 1.25 \text{ m}$
- Seeing (500nm) = 0.5"
- Pachon profile (64% @ ground level)
- 8-m telescope
- 50cm pitch
- GS placed on a circle
- No AO results: FWHM = (400± 14) mas