

[bookmark: _Ref56070780]

Gemini Observatory ICD50
GIAPI C++ Language Glue API
Version 11

Arturo Núñez, Kim Gillies

GIAPIC++ICD50-02042008/10
Created: February 4, 2008
Modified: January 28, 2014

[image: small_gem_logo]

Change Record
	Version
	Date
	Author
	Notes

	1
	February 28, 2008
	Arturo Núñez, Kim Gillies
	· First Version

	2
	July 24, 2008
	Arturo Núñez
	· Second Version. Includes changes agreed on visit to HIA in March 2008. Minor updates to API.

	3
	August 29, 2008
	Arturo Núñez
	· Third Version. Incorporated comments and corrections from Jennifer Dunn after second release

	4
	October 21, 2008
	Arturo Núñez
	· Fourth Version. Added exceptions to the GIAPI

	5
	February 3, 2009
	Arturo Núñez
	· Replaced char* arguments in the ServiceUtil class with standard C++ strings.

	6
	April 9, 2009
	Arturo Núñez
	· Added timeout to getProperty() method.
· Added new TimeoutException.
· Replaced char* with standard C++ string arguments in methods of the StatusUtil, HandlerResponse, GeminiUtil, EpicsStatusItem, DataUtil, Configuration, and CommandUtil classes.
· Added utility methods to the EpicsStatusItem interface to facilitate data decoding.
· Added section about the GiapiUtil class.

	7
	December 21, 2009
	Arturo Núñez
	· Added reference to float support for status items
· Added timeout to getTcsContext() call.

	8
	February 18, 2010
	Arturo Núñez
	· Removed unnecessary ALL level for system logging service.

	9
	February 23, 2011
	Nicolas A. Barriga
	· Added info on gmp.properties config file.

	10
	February 03, 2012
	Nicolas A. Barriga
	· Added info on Engineering commands

	11
	January 17, 2014
	Carlos Quiroz
	· Added information about the getChannel method

[bookmark: _Toc482440238]
Table of Contents
1	Introduction	1
1.1	Document Purpose	1
1.2	Intended Readership	1
1.3	Conventions	1
1.4	Acronyms	2
1.5	Reference Materials	2
2	Overview of GIAPI C++ Language Glue API	3
3	Library Usage	4
3.1	Compiler and build tools	4
3.2	Dependencies	5
3.3	Accessing the library C++ public headers	5
3.4	Linking with the library	5
3.5	General conventions used in the C++ Language Glue API	6
3.6	Exceptions in the C++ Language Glue API	6
4	Providing Status to Gemini	7
4.1	General overview	7
4.2	Status Item initialization	9
4.3	Setting Values to status items	10
4.3.1	Setting values to regular status items	10
4.3.2	Setting Alarms	11
4.3.3	Setting Health	12
4.4	Posting status to Gemini	12
5	Receiving Sequence Commands from Gemini	13
5.1	General Overview	13
5.2	Sequence Command Handlers	15
5.3	Subscribing to Sequence Commands other than Apply	18
5.3.1	Arguments in Sequence Commands	20
5.4	Subscribing to the Apply Sequence Command	21
5.5	Updating Gemini with Action Status	21
6	Interacting with Gemini Systems	23
6.1	General Overview	23
6.2	Receiving Status Information from a Gemini System	23
6.3	Access to current EPICS values	27
6.4	Provide Wavefront Sensor corrections to the PCS	27
6.5	Access to the TCS Context	28
7	Using Gemini Services	29
7.1	General Overview	29
7.2	Logging Service	29
7.2.1	Process Logging	29
7.2.2	System Logging	29
7.3	Access to Observatory Time	30
7.4	GIAPI Configuration Properties	30
8	Providing Science Data to Gemini	31
8.1	General overview	31
8.2	Sending Observations Events with GIAPI	32
8.3	Ancillary Files and GIAPI	33
8.4	Support for Intermediate Files	33
9	Error Handling and Fault Tolerance in the GIAPI C++ Language Glue	34
9.1	General Overview	34
9.2	Error Handlers for GMP communication problems	35
9.2.1	Object-oriented approach to deal with GMP communication problems	35
9.2.2	A procedural approach to deal with GMP communication problems	36
10	Exceptions in the GIAPI C++ Language Glue	36
10.1	Exception Classes in the GIAPI C++ Language Glue	36

iv
ICD50:GIAPI C++ Language Glue API	GIAPIC++ICD50-02042008/11	

[bookmark: _Toc65298745][bookmark: _Toc65300587][bookmark: _Ref64979002][bookmark: _Ref64979009][bookmark: _Toc252518810]Introduction
This document provides a description of the C++ Programming Language Application Programmer Interface for the Gemini Instrument Application Programmer Interface (GIAPI). The GIAPI concept was introduced in 2004 to support the second generation of Gemini instruments, the products of the Aspen instrument process.
The Aspen instrument documentation tree is shown in Figure 1. The document you are reading is a companion document to the top-level document Aspen GIAPI Design and Use [1]. GIAPI Design and Use is the document that describes how the GIAPI works and how builders should use the library to integrate with Gemini software and hardware systems. Requirements and patterns for its use are described to clarify how responsibilities are balanced between Gemini and the instrument builder.
The GIAPI provides a client integration library in two computer programming languages: C++ and Java. This document is an Interface Control Document (ICD) describing how instrument code written in the C++ programming language uses the GIAPI.

[image: GIAPI-DocTree]
[bookmark: _Ref64001730]Figure 1: GIAPI Documentation Tree
[bookmark: _Toc252518811]Document Purpose
The purpose of this document is to present the C++ GIAPI Language API. This document does the following:
Provides C++ compiler tool standards.
Provides descriptions of the GIAPI C++ implementation methods.
Provides information on how to use the GIAPI C++ client integration library.
This document does not rehash the critical information in references [1] and [2]. It is assumed that the reader has read these other documents and understands their content.
[bookmark: _Toc482440234][bookmark: _Toc252518812]Intended Readership
The intended audience for this document is groups who are writing software or design review documents for Aspen instruments. The document is targeted specifically towards C++ programmers or other specialists who understand software and who must design or implement the TLC for a Gemini Aspen instrument.
[bookmark: _Toc252518813]Conventions
[image: GIAPIGraffleFigures]The GIAPI is still under development in some areas and things that are expected to undergo some changes are marked like this paragraph with a yellow exclamation point. There are not many of these situations in this document.
Code examples and individual methods are written in a fixed-width font like this: unsubscribeToStatus.
[bookmark: _Toc252518814]Acronyms
ACM	Action Command Model
CMS	C++ Messaging Service
DHS	Data Handling System
GIAPI	Gemini Instrument Application Programmer Interface
GMP	Gemini Master Process
GSDN	Gemini Data Storage Network
ICD	Interface Control Document
JMS	Java Message Service
PCS	Primary Control System
TCS	Telescope Control System
TLC	Top Level Computer
WCS	World Coordinate System
[bookmark: _Toc252518815]Reference Materials
[bookmark: _Ref23829368][bookmark: _Ref23593036]Guidelines for Designing Gemini Aspen Instrument Software, Kim Gillies, AspenSoft-03072004-6.
[bookmark: _Ref64007697][bookmark: _Ref64897029][bookmark: _Ref23613299]Aspen GIAPI Design and Use, Kim Gillies, Arturo Núñez, GIAPIUse-08292006-02.
[bookmark: _Ref24560276]FITS Standard Specification: http://archive.stsci.edu/fits/fits_standard/fits_standard.html.
[bookmark: _Ref65727650]FITSIO Home Page, http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html
[bookmark: _Ref25122695]TCS/PTW/8.6, World Coordinates, Part 1: Astrometry, P.T. Wallace, RAL.
[bookmark: _Ref65291777]Java Message Service Home Page, http://java.sun.com/products/jms/
[bookmark: _Ref64884241]Apache log4xx Home Page, http://logging.apache.org/log4cxx/index.html
[bookmark: _Ref65040428]The boost C++ Libraries Home Page http://www.boost.org/
[bookmark: _Ref65042939]The CppUnit framework Home Page, http://cppunit.sourceforge.net/cppunit-wiki
[bookmark: _Ref65291913]Apache ActiveMQ Home Page, http://activemq.apache.org/
[bookmark: _Ref65292177]Apache ActiveMQ CPP Home Page, http://activemq.apache.org/cms/

[bookmark: _Toc65298752][bookmark: _Toc65300594][bookmark: _Toc252518816]Overview of GIAPI C++ Language Glue API
The GIAPI C++ Language glue API (also referred in this document as the GIAPI C++ API or simply as the C++ API) is one of the Language binding options used by instrument code to integrate with Gemini. The C++ API is implemented as a shared library in C++. Figure 2 shows the relationship between the C++ API and the instrument code. The API sits between the instrument code and the Gemini Master Process (GMP).
[image: GIAPIC++GraffleFigures]
[bookmark: _Ref65161787]Figure 2: Relationship between C++ Language API and instrument code

The GIAPI C++ API library is included with any process that the builder creates that must communicate with Gemini. Which processes in the instrument must link with and use the C++ API is an instrument design decision.
The communication protocol between the C++ API and the GMP is encapsulated within the GIAPI implementation.
The design of the C++ Language glue is based on a collection of utility classes, as shown in Figure 3. These utility classes are organized by the functionality they provide and the description of the functionality in [2]. Each utility class provides static methods the instrument code can call to access the integration functionality offered by the GIAPI framework.
The utility classes provided by the C++ API are:
StatusUtil: This class provides the mechanisms needed for instrument code to provide status information (including alarms and health information) to Gemini. Details about this class are presented in section 4 in this document, Providing Status to Gemini.
CommandUtil: Mechanisms to receive and handle sequence commands are provided by the CommandUtil class. With this class, instrument code can receive sequence commands and provide completion information to Gemini. This class is discussed in detail in section 5, Receiving Sequence Commands from Gemini.
GeminiUtil: This class provides methods that allow instrument code to interact with Gemini systems. In particular, it may be used to receive information from Gemini EPICS-based systems (primarily the TCS and its subsystems), offload wavefront corrections to the Primary Control System (PCS) and access the TCS Context to compute World Coordinate Information. This class is detailed in section 6, Interacting with Gemini Systems.
ServicesUtil: GIAPI provides a set of services that most of the instruments will need, such as logging, observatory time and GIAPI configuration properties. This class provides access to those services, and they are discussed in section 7, Using Gemini Services.
DataUtil: The science data produced by the instruments must be transferred to Gemini where is stored, tracked, and delivered to observers and the Gemini Science Archive. The DataUtil class in the GIAPI C++ language glue provides the methods needed by instrument software create science datasets in the Gemini environment. Specifics about this class are discussed in section 8, Providing Science Data to Gemini.
GiapiUtil: A collection of auxiliary methods available in the GIAPI to deal with error condition and fault tolerance mainly. Details about this class are discussed in section 9, Error Handling and Fault Tolerance in the GIAPI C++ Language Glue.
[image:]
[bookmark: _Ref65164689]Figure 3: GIAPI C++ Language glue API as set of utility classes
The rest of this document is structured as follow. Section 3 presents a general description on the usage of the GIAPI C++ API, including library dependencies, tools and conventions used. The remaining sections cover each set of utility classes depicted above in turn.
[bookmark: _Ref65165186][bookmark: _Ref65165190][bookmark: _Ref65165193][bookmark: _Ref65165201][bookmark: _Toc252518817]Library Usage
This section discusses topics that are relevant to all GIAPI usage.
[bookmark: _Ref65050401][bookmark: _Toc252518818][bookmark: _Ref65043954][bookmark: _Ref62559234][bookmark: _Ref62624180]Compiler and build tools
The GIAPI C++ API was compiled with GCC version 4.1 on RedHat Enterprise Linux 5 Server for 64 bits. The following are tools used during the development of the GIAPI C++ API:
g++ (GCC) 4.1.2 20080704 (Red Hat 4.1.2-46)
GNU Make 3.81
GNU ld version 2.17.50.0.6-2.el5 20061020
RedHat Enterprise Linux 5 Server, Linux kernel 2.6.18-194.26.1.el5, 64-bit
The required compiler to build and link with the GIAPI C++ API is GCC version 4 or above. Version 3 of GCC does not include the Technical Report 1 extensions libraries used internally in the library so its usage is discouraged.
The dependencies described in the next section are known to work in this environment. A few other conventions used in this section are the following:
The library is installed in a directory called INSTALL_DIR
External dependencies are installed in a directory called EXTERNAL_LIB
Library headers are in INSTALL_DIR/include, referred as GIAPI_INCLUDE_DIR
Binary library is located in INSTALL_DIR/lib, referred as GIAPI_LIB_DIR
[bookmark: _Ref65721681][bookmark: _Toc252518819]Dependencies
The GIAPI C++ API depends on the libraries listed in this section. Many of them should be readily available in the environment for which GIAPI is targeted. A few others must be installed and are prerequisites to use the C++ API. These cases are noted.
STL: The Standard Template Library is used in the C++ API. The extensions available in the GNU C++ compiler declared in the namespace __gnu_cxx are used, but limited to the hash table implementations. Hash tables are not part of the STL, but the hash table implementation in the __gnu_cxx namespace is widely used. The STL and extensions should be available in the target environment. No extra libraries are included in the binary distribution of the GIAPI C++ Language glue. It is required they are available in the target system.
Smart Pointers: The C++ Language glue implementation uses the std::tr1::shared_ptr library. This almost-standard smart pointer template provides non-intrusive reference-counting semantics for any class. It was originally designed and implemented as part of the boost libraries [8], but today is available in recent versions of the g++ and other compilers by default. Many of the boost libraries are part of the libraries already included in the C++ Standards Committee's Library Technical Report 1 (tr1). GNU C++ version 4 in Linux comes with the tr1 extensions already included. It is required that the std::tr1::shared_ptr library be available to build the C++ API.
The any boost library: The any boost library is used internally in the GIAPI C++ Language glue. Details about this library can be found in http://www.boost.org/doc/html/any.html. This library is composed of C++ headers only that are included in the source code of the C++ API, so they are available directly. It is listed here for completeness.
The Apache Log4cxx library: Log4cxx, a C++ port of Log4J, is used in the GIAPI C++ API. Details about how to use Log4cxx can be found in [7]. Log4cxx must be available both to compile and to use the GIAPI C++ API. Source code can be obtained via anonymous SVN from http://svn.apache.org/repos/asf/logging/log4cxx/trunk. During building, it is assumed it is installed in EXTERNAL_LIB/log4cxx. The binary distribution of the GIAPI C++ Language glue comes with the Log4cxx library available in the GIAPI_LIB_DIR directory.
CppUnit testing library: For unit testing, the C++ API uses the CppUnit framework, described in [9]. This library is required to run the unit tests that come with the source code distribution. It is not required to use the library though. For building, it must be installed on EXTERNAL_LIB/cppunit. It is not included in the binary distribution of the GIAPI C++ API.
Apache ActiveMQ-CPP Library: Communication between the GIAPI C++ API and the Gemini Master Process uses Java Message Service (JMS) [6]. ActiveMQ is the Message Broker provider that implements the JMS specification [10]. The JMS API for C++ for interfacing with Apache ActiveMQ is called C++ Messaging Service (CMS). This API is implemented by the Apache ActiveMQ CPP library [11]. This library is required to compile and use the GIAPI C++ API library. To build the GIAPI C++ library, ActiveMQ CPP must be installed in EXTERNAL_LIB/activemq. The binary distribution comes with this library in the GIAPI_LIB_DIR directory.
[bookmark: _Toc252518820]Accessing the library C++ public headers
Any necessary C++ headers to access the GIAPI C++ public interfaces are available in the GIAPI_INCLUDE_DIR directory. Usually it is only needed to add the –I$(GIAPI_INCLUDE_DIR) flag during compilation in order to have these C++ headers available to build the source code.
[bookmark: _Toc252518821]Linking with the library
The GIAPI C++ language glue is implemented as a shared library. The library is used by any process that the instrument builder creates that must communicate with Gemini. Instrument code that needs to interact with the GIAPI framework needs to link with this library.
The library is named giapi-glue-cc. The library is installed in the INSTALL_DIR directory. This directory contains two folders: lib and include. The lib directory contains the actual library shared object whereas the include directory contains the C++ headers required to use the library. These two directories are referred to as the GIAPI_INCLUDE_DIR and the GIAPI_LIB_DIR respectively.
In Linux, the library file is named libgiapi-glue-cc.so. This is actually a symbolic link to the current version of the library that is in the same directory.
Since the GIAPI C++ API depends on external libraries (see section 3.2), to use the C++ API it is required to have those libraries accessible as well. The binary distribution of the GIAPI C++ API contains those libraries in the GIAPI_LIB_DIR.
To link against the installed libraries in a GIAPI_LIB_DIR directory under Linux, you must either use libtool, and specify the full pathname of the library, or use the –L$(GIAPI_LIB_DIR) flag during linking and do at least one of the following:
add GIAPI_LIB_DIR to the LD_LIBRARY_PATH environment variable during execution.
Add specified directory to library cache: (as root) ldconfig -n $(GIAPI_LIB_DIR). This will not permanently configure the system to include this directory. The information will be lost once upon system reboot.
have your system administrator add GIAPI_LIB_DIR to /etc/ld.so.conf. See any operating system documentation about shared libraries for more information, such as the ld(1) and ld.so(8) manual pages.
To run an executable using the library, you need a configuration file called gmp.properties. This file should be either in your current directory, or you need to set the GMP_CONFIGURATION environment variable to point to it. You can find a sample gmp.properties file in the examples directory.
[bookmark: _Ref78473933][bookmark: _Toc252518822]General conventions used in the C++ Language Glue API
The C++ API is implemented in the namespace giapi. In all the examples in this document, it is assumed that the using namespace giapi directive is in use. All the other namespaces used in the GIAPI C++ API are contained in the giapi namespace.
As mentioned in section 3.1, the C++ API uses shared pointers extensively through the std::tr1::shared_ptr library. For convenience, a type definition is provided in all the class headers that require access through a smart pointer. The convention is that for any given class Class, the corresponding smart pointer definition will be called pClass. For instance, the Configuration class (described in chapter 5) contains the following pConfiguration definition in the <giapi/Configuration.h> header file:
 typedef std::tr1::shared_ptr<Configuration> pConfiguration
The <giapi/Configuration.h> header includes <tr1/memory> required to access the smart pointer library. In general, instrument code will only need to include the GIAPI C++ headers when using the smart pointer definitions in the GIAPI classes.
If the same smart pointer library is used outside the scope of classes provided in the GIAPI, then including <tr1/memory> is mandatory. In other words, instrument code should not rely on the inclusion of this header by the GIAPI headers for other purposes, since this is an implementation detail.
[bookmark: _Toc252518823]Exceptions in the C++ Language Glue API
Several methods in the GIAPI Language glue can produce exceptions that need to be handled by the client code. Details about the exception class hierarchy and the different types of exceptions in use in the GIAPI are found in section 9. The higher level methods in the GIAPI C++ Language glue abstract the complexity by listing only the base class of all the GIAPI exceptions, the giapi::GiapiException class. Methods that throw this exception are listed in the following sections.

[bookmark: _Ref24517186][bookmark: _Ref24517190][bookmark: _Ref24520196][bookmark: _Toc252518824]Providing Status to Gemini
This section describes how an instrument provides status information to Gemini using the GIAPI C++ API discussed in section 9 of [2]. Please refer to this section for more information on status usage. We begin by providing an overview on how status is supported in the API and then a description of the different methods available in the library. Examples are shown to illustrate the principal functionalities.
[bookmark: _Toc252518825][bookmark: _Ref52450088]General overview
The functionality required for providing status is provided in a utility class called StatusUtil. The three types of status items provided by the GIAPI are supported in the C++ API with the classes: StatusItem, AlarmStatusItem and HealthStatusItem. StatusItem is the base class of the other two.
In the GIAPI C++ API StatusItem contains the following information:

	Status Item Member
	Description
	Example

	name
	The unique name of the status item.
	INST:blockingfilter

	timestamp1
	The time when the status item value was set.
	time is in milliseconds since January 1, 1970 UTC.

	value
	The current value of the status item.
	10, 12.23, “Ready”, K(prime)

	data type
	The type for values in the status item. All values must be of the same type.
	Currently support for boolean, integer, float, double and string

1. Note that the timestamp is available in the status item, but it is set by the GIAPI as a side effect of setting the value of the item. The builder code does not need to set the timestamp.
Table 1: StatusItem members
The data types are defined in the giapi::type namespace, declared in the <giapi/giapi.h> header file. Supported types are BOOLEAN, INT, FLOAT, DOUBLE and STRING.
AlarmStatusItem adds a severity, a cause and a message. Severity and cause are defined as enumerated types in the GIAPI C++ API. The valid values for them are shown in the following table. These enumerated types are defined in the giapi::alarm namespace and are called Severity and Cause, respectively. They are also declared in the <giapi/giapi.h> header.

	Status Item Member
	Description
	Values

	severity
	Severity indicates whether or not the alarm is catastrophic
	ALARM_OK
ALARM_WARNING
ALARM_FAILURE

	cause
	Cause indicates the cause of an alarm.
	ALARM_CAUSE_OK
ALARM_CAUSE_HIHI
ALARM_CAUSE_HI
ALARM_CAUSE_LOLO
ALARM_CAUSE_LO
ALARM_CAUSE_OTHER

	message
	Message can be used to describe the cause of an alarm condition. Message is required with the ALARM_CAUSE_OTHER alarm cause
	

Table 2: Alarm status members. Enumerated types defined in the giapi::alarm namespace
Finally, HealthStatusItems are special status items whose valid values are one of the following enumerated types defined in the giapi::health namespace.

	Health Value
	Description

	GOOD
	The system/subsystem is normal

	WARNING
	The system/subsystem is operating, but not normally.

	BAD
	The system/subsystem is not operating.

Table 3: Health Values, defined in the giapi::health namespace
The enumerated values are defined in the giapi::health namespace, declared in the <giapi/giapi.h> header file. The full name of a health status value would be giapi::health::GOOD for instance.
All the status items need to be initialized in the GIAPI framework before using them. The initialization usually means to give them a name and an associated data type. For health status items the data type is fixed, therefore it is not needed during initialization.
Every time a value is set in a status item, the status item is flagged as dirty. A dirty status item means its value has not been published to the GMP. When the GIAPI C++ API posts the status items to the GMP, the status item dirty flags are cleared. If the items are not dirty, on the other hand, the items will not be posted since it is assumed their values are already known by the GMP. By default, the status items are initialized as dirty. The dirty flag is not set when the status item value is set with a value that is equal to the status item’s current value.
Providing status to Gemini in the C++ API is done using the StatusUtil class. This class provides methods to handle all the required status item functionality.
The following table lists all the public classes and types that provide status support in the GIAPI C++ API and the C++ headers where they are declared. The giapi namespace is assumed in all the classes and types.

	Class/Type
	Description
	C++ header

	StatusUtil
	Utility class to manipulate and post status to Gemini.
	<giapi/StatusUtil.h>

	type::Type
	Enumerated type to define the supported data types for Status Items
	<giapi/giapi.h>

	alarm::Severity
	Enumerated type to define the severity of alarms
	<giapi/giapi.h>

	alarm::Cause
	Enumerated type to define the cause of alarms
	<giapi/giapi.h>

	health::Health
	Enumerated type to define health status values
	<giapi/giapi.h>

Table 4: Main classes and types to provide status support in the C++ Language glue
The set of tasks that a typical application must follow to use status within the GIAPI framework are easily identified. The following enumerates these common steps and gives pointer to sections in which they are covered in more detail:
1. Initialize status item (Section 4.2). Status items of the three types must be created before they can be used in the GIAPI. The initialization defines the type of the status item and usually the data type it contains (the exception to this is Health Status Items where the data type is pre-defined).
2. Set values to the status items (Section 4.3). Once initialized, status items are ready to be used to store different values. Every time a value changes in a status item, it is internally flagged as dirty and its timestamp is updated.
3. Post status items to the GMP (Section 4.4). When the application needs to publish its state, it will use the methods described in this section. During the post stage, the dirty items are sent to the GMP and their dirty state is cleared.
[bookmark: _Ref64522153][bookmark: _Toc252518826]Status Item initialization
In order to use the different status items, they need to be initialized in the GIAPI framework. The following are the methods available in StatusUtil to do this.
		createStatusItem

	Signature:
	static int createStatusItem(const std::string& name,
 const type::Type type)

	Description:
	Create an status item in the GIAPI framework

	Parameters:
	name: The name of the status item to be created
type: Data type associated to the status item

	Returns:
	status::OK if the status item was successfully created
status::ERROR if another status item with the same name already exists.

For instance:

 if (StatusUtil::createStatusItem("inst:filter", type::STRING) != status::OK) {
 //status item couldn't be initialized
 }
The above example is instantiating a status item “inst:filter”, that will store string elements on it.

	createAlarmStatusItem

	Signature:
	static int createAlarmStatusItem(const std::string& name,
 const type::Type type)

	Description:
	Create an alarm status item in the GIAPI framework. An alarm status item is a status item that adds Severity, Cause and a Message. Default Severity is alarm::ALARM_OK. Default Cause is alarm::ALARM_CAUSE_OK. Default message is NULL

	Parameters:
	name The name of the alarm status item that will be created. If an status item with the same name already exists, the method will return giapi::status::ERROR
type Type information for the values to be stored in the status item.

	Returns:
	status::OK if the alarm item was successfully created
status::ERROR if another status item with the same name already exists.

For example, to create a temperature status item with alarm information, the following call could be used:

 if (StatusUtil::createAlarmStatusItem("inst:dc:temperature", type::INT) != status::OK) {
 //alarm status item couldn't be initialized
 }

	createHealthStatusItem

	Signature:
	static int createHealthStatusItem(const std::string& name)

	Description:
	Create a health status item in the GIAPI framework. A health status item provides the overall operational status of a system or subsystem. The health can be: health::GOOD, health::WARNING or health::BAD.
The default state for health after creation is health::GOOD.

	Parameters:
	name The name of the health status item that will be created. If an status item with the same name already exists, the method will return giapi::status::ERROR

	Returns:
	status::OK if the status item was successfully created
status::ERROR if another status item with the same name already exists.

[bookmark: _Ref64522481]The following example will instantiate a health status item:
 if (StatusUtil::createHealtStatusItem("inst:health") != status::OK) {
 //health status item couldn't be initialized
 }
[bookmark: _Ref64969476][bookmark: _Toc252518827]Setting Values to status items
Once initialized, the status items are ready to be used. The following sections describe the methods available in StatusUtil to set values to the different status items. Every time the value is changed, the internal state of the status item is marked as dirty. In the next post operation (see section 4.4), all the dirty status items will be dispatched to the GMP.
For normal status items the library provides methods to set values using different types. For alarm status items, the library allows setting or clearing the alarm state of the items. Finally, a method allows setting the health value to health status items. If an operation is not supported for a given status item, an error is returned by the call. For example, an error is returned if a status item is set with a value with a type different than the type used when the status item was initialized.
[bookmark: _Toc252518828]Setting values to regular status items
The following are the methods available in the C++ Language glue to set values to the different status items.

		setValueAsInt

	Signature:
	static int setValueAsInt(const std::string& name, int value)

	Description:
	Set the value of the given status item to the provided integer value

	Parameters:
	name: Name of the status item whose value will be set
value: Integer value to store in the status item

	Returns:
	giapi::status::OK if the value was set correctly
giapi::status::ERROR if there is a problem setting the value and the operation was aborted. This can happen if the type of the status item was not defined as type::INTEGER or if there is no status item associated to the given name

To set the exposure time in the detector controller of an instrument, the following code might be used:

 if (StatusUtil::setValueAsInt("inst:dc.exposure", 60) != status::OK) {
 //couldn't set the exposure time
 }
In addition to the setValueAsInt method, the C++ Language Glue provides the following methods that operate on different data types:
setValueAsDouble
setValueAsFloat
setValueAsBoolean
setValueAsString
setValueAsFloat
These methods have a similar signature to the setValueAsInt method so they are not described in more details in this document.
[bookmark: _Toc252518829]Setting Alarms
To set the alarm state of an AlarmStatusItem, the C++ API provides the following methods in the StatusUtil class:

		setAlarm

	Signature:
	static int setAlarm(const std::string& name,
 alarm::Severity severity,
 alarm::Cause cause,
 std::string& message = string());

	Description:
	Set the alarm for the specified status alarm item.

	Parameters:
	name Name of the alarm item. The alarm items should have been initialized by a call to createAlarmStatusItem. Failing to do so will return an error.
severity the alarm severity.
cause the cause of the alarm
message Optional message to describe the alarm. This argument is mandatory if the cause is alarm::ALARM_CAUSE_OTHER.

	Returns:
	giapi::status::OK if the alarm value was set correctly
giapi::status::ERROR if there was an error setting the alarm (for instance, the alarm item has not been created or the name does not correspond to an alarm status item). This value is also returned if no message is specified when the cause is set to alarm::ALARM_CAUSE_OTHER.

For instance:

 StatusUtil::setAlarm("inst:dc:temperature",
 giapi::alarm::ALARM_WARNING,
 giapi::alarm::ALARM_CAUSE_HI);
Note: Even though we are assuming in all the examples that we are using the namespace giapi, in the example above the alarm namespace is explicitly qualified with the giapi namespace to avoid conflicts with the alarm interface in the standard C library. This might not be necessary in some environments.
To clear the alarm state one option would be to use the call:

 StatusUtil::setAlarm("inst:dc:temperature",
 giapi::alarm::ALARM_OK,
 giapi::alarm::ALARM_CAUSE_OK);
The C++ Language glue provides a convenience method to reset the state of an alarm. This is the recommended way to reset alarm states.

		clearAlarm

	Signature:
	static void clearAlarm(const std::string& name)

	Description:
	Clear the alarm state of the alarm status item specified by name.

	Parameters:
	name Name of the alarm item. The alarm items should have been initialized by a call to createAlarmStatusItem. Failing to do so will return an error.

	Returns:
	giapi::status::OK if the alarm was cleared
giapi::status::ERROR if there was an error clearing the alarm (for instance, the alarm has not been created, or the name is not associated to an alarm status item)

Using this method, to clear an alarm state will require only a call similar to:

StatusUtil::clearAlarm("inst:dc:temperature");

Note that if an alarm is to be used with a status item, it must be initialized as an AlarmStatusItem; a StatusItem will not allow the alarm to be set.
[bookmark: _Toc252518830]Setting Health
For health status items, the C++ Language glue provides one method in the StatusUtil class:
		setHealth

	Signature:
	static int setHealth(const std::string& name,
 const health::Health health)

	Description:
	Set the health value for the given health status item.

	Parameters:
	name Name of the health item. The health item must have been initialized by a call to createHealthStatusItem(). Failing to do so will return an error.
health the health state of the health status item specified by name

	Returns:
	giapi::status::OK if the health was successfully set
giapi::status::ERROR if there was an error setting the health (for instance, the health status item hasn't been created or the name doesn't correspond to a health status item).

As an example, the following method will set the health to WARNING to the status item inst:health. The assumption here is that inst:health was previously initialized by the createHealthStatusItem call.

 if (StatusUtil::setHealth("inst:health", health::WARNING) != status::OK) {
 //problem setting health
 }
[bookmark: _Ref64522512][bookmark: _Ref65566579][bookmark: _Toc252518831]Posting status to Gemini
Any application that needs to publish its status to Gemini must create and keep up to date different status items. For these, instrument use the methods described in section 4.2 and 4.3. To publish the values of these status items with the GMP to Gemini, instruments need to post their status items frequently following the discussion in Section 9 of [2]. The post mechanisms allow the application to provide updates to Gemini through the GMP.
In the C++ Language glue, the StatusUtil class provides methods to help posting status to Gemini. These methods are described now.

		postStatus

	Signature:
	static int postStatus() throw (GiapiException)

	Description:
	Post all pending status to Gemini. Pending statuses are those whose value has changed since last time posted.

	Parameters:
	none

	Returns:
	giapi::status::OK if the post succeeded.
giapi::status::ERROR if there is some error in the attempt to send

	Throws:
	GiapiException in case there is a problem with the underlying mechanisms to execute the post

For instance, the following call will post all the items that have changed since the last time the same call was executed.

 try {
 if (StatusUtil::postStatus() != giapi::status::OK) {
 //an error occurred.
 }
 } catch (GiapiException& e) {
 //handle exception here.
 }
In addition, the C++ language glue allows instrument code to post one specific item to the GMP, using a postStatus method with the following signature:

		postStatus

	Signature:
	static int postStatus(const std::string& name) throw (GiapiException)

	Description:
	Post the specified status item to Gemini. The status will be sent only if it has changed since the last time it was posted.

	Parameters:
	name The name of the status item to be posted

	Returns:
	giapi::status::OK if the post succeeds. .
giapi::status::ERROR if there is no information associated to the specified status item or the item was not posted since it did not change since the last time it was posted to the GMP

	Throws:
	GiapiException in case there is a problem with the underlying mechanisms to execute the post

[bookmark: _Ref24605105]The usage of this method is similar to the postStatus() method without argument.
[bookmark: _Ref65049536][bookmark: _Ref65049540][bookmark: _Ref65164753][bookmark: _Ref65164894][bookmark: _Toc252518832]Receiving Sequence Commands from Gemini
This section describes how an instrument receives and handles sequence commands from Gemini using the GIAPI C++ Language Glue. It provides the C++ language implementation for Section 10 of [2].
[bookmark: _Toc252518833][bookmark: _Ref62117595]General Overview
For the builder, there are two parts to handling commands through GIAPI. First, the instrument registers interest in receiving a command using a sequence command handler. Then, through other GIAPI methods, the instrument provides command completion information to GMP and Gemini.
In the C++ API, the CommandUtil utility class provides the main access point to the functionality needed to receive and process sequence commands. Instrument code needs to provide implementations of the SequenceCommandHandler interface to define handlers that will be invoked when sequence commands are received.
A SequenceCommandHandler is registered to handle a given SequenceCommand and a set of Activity elements. The C++ API uses an ActivitySet enumerated type to represent groups of Activity items. One SequenceCommandHandler can be used to handle several SequenceCommands or each SequenceCommand can have its own.
A SequenceCommandHandler receives a Configuration associated to a given SequenceCommand and Activity. A Configuration is made up of parameters. Each parameter has a name and a value. In the C++ API, Configuration is an interface providing mechanisms to access the parameters contained in the configuration.
Whenever a SequenceHandler is invoked, a HandlerResponse is returned. In addition, a HandlerResponse is also used to provide command completion information to Gemini. Details about the use of the HandlerResponse are discussed further in the following sections.
The following table lists all the public classes that provide command support in the C++ language glue, and the C++ headers where they are declared.

	Class
	Description
	C++ header

	CommandUtil
	Utility class to register interest in receiving commands and posting completion information.
	<giapi/CommandUtil.h>

	SequenceCommandHandler
	Interface for Sequence Command Handlers
	<giapi/SequenceCommandHandler.h>

	HandlerResponse
	Contains the response information when dealing with Commands
	<giapi/HandlerResponse.h>

	Configuration
	Interface to access sequence command configurations
	<giapi/Configuration.h>

Table 5: Main classes to receive commands in the C++ Language glue
The SequenceCommand in the GIAPI C++ Language Glue is defined as an enumerated type, listed in Table 6. The enumeration is called giapi::command::SequenceCommand. Activities are also defined as an enumerated type in the same namespace, called giapi::command::Activity. The values for Activities are listed in Table 7. In addition, the C++ API provides a giapi::command::ActivitySet enumerated type to help grouping Activities, whose values are in Table 8. Further discussion of ActivitySet is presented in section 5.3.

	Sequence Command
	Enum Value
	
	Sequence Command
	Enum Value

	test
	TEST
	
	apply
	APPLY

	reboot
	REBOOT
	
	observe
	OBSERVE

	init
	INIT
	
	endObserve
	END_OBSERVE

	datum
	DATUM
	
	pause
	PAUSE

	park
	PARK
	
	continue
	CONTINUE

	verify
	VERIFY
	
	stop
	STOP

	endVerify
	END_VERIFY
	
	abort
	ABORT

	guide
	GUIDE
	
	engineering
	ENGINEERING

	endGuide
	END_GUIDE
	
	
	

[bookmark: _Ref64978866][bookmark: _Ref64979312]Table 6: Sequence Command enumeration values.

	Activity Name
	Enum Value
	Description

	preset
	PRESET
	Receiver should only determine if the actions associated with the sequence command can be started and return a handler response.

	start
	START
	Receiver should start any actions associated with the sequence command and return a handler response.

	preset/start

	PRESET_START
	Receiver should execute preset, and if successful immediately start the actions associated with the sequence command. The receiver should return the appropriate handler response.

	cancel
	CANCEL
	Receiver should attempt to cancel the actions associated with the request ID and sequence command.

[bookmark: _Ref64978878]Table 7: Enumeration values of Activities and descriptions

	ActivitySet Enum Value
	Description

	SET_PRESET
	A set containing the PRESET activity only

	SET_START
	A set containing the START activity only

	SET_PRESET_START
	A set containing the PRESET_START activity only

	SET_CANCEL
	A set containing the CANCEL activity only

	SET_PRESET_CANCEL
	A set containing the PRESET and CANCEL activities

	SET_START_CANCEL
	A set containing the START and CANCEL activities

	SET_PRESET_START_CANCEL
	A set containing the PRESET, START and CANCEL activities.

[bookmark: _Ref64978901]Table 8: ActivitySet enumeration values
These three enumerated types are defined in the giapi::command namespace declared in the <giapi/giapi.h> header file; therefore the fully qualified name of one enumerated type is giapi::command::REBOOT, for instance.
The tasks that a typical application must follow to receive commands from Gemini are listed below, including pointer to sections in which they are covered in more detail:
1. Implement a sequence command handler (Section 5.2)
2. Subscribe to a sequence command (Section 5.3 and 5.4)
3. Post completion information to Gemini (Section 5.5)
[bookmark: _Ref64979234][bookmark: _Toc252518834]Sequence Command Handlers
A Sequence Command Handler (SCH) in the C++ API is an instance of a class that implements the SequenceCommandHandler interface. One SCH can be used for multiple sequence commands or each sequence command can have its own. The interface defines only one method named handle. The following is the signature of the handle method in the C++ Language glue:

		handle

	Signature:
	pHandlerResponse handle(command::ActionId id,
 command::SequenceCommand sequenceCommand,
 command::Activity activity,
 pConfiguration config)

	Description:
	This method is invoked when commands are received by the GIAPI if the handler has been registered using the subscribeSequenceCommand or the subscribeApplyCommand methods.

	Parameters:
	id the unique value that identifies the request or equivalently identifies the set of actions started by the request. The handler should retain the value unless the actions started by the request are completed immediately. The same action id will not be used again in any future request unless the GMP is restarted.
sequenceCommand the sequence command that should be handled, such as TEST or REBOOT
activity Activity requested by the sender, like PRESET_START or CANCEL
config a configuration associated to the command, as a smart pointer.

	Returns:
	A smart pointer to a HandlerResponse object, containing the result of handling the command.

The possible values for the sequenceCommand and the activity arguments are shown in Table 6 and Table 7. The Configuration is an interface passed to the handler as a smart pointer. There are three principal operations provided by the Configuration interface:
1. Get the value associated to any given key
2. Get all the keys (names) of the parameters contained in the configuration
3. Get the number of parameters contained in the configuration
The methods that provide support for these operations are described below. They are part of the Configuration interface. Notice the handle method receives as an argument a smart pointer to the actual Configuration, so the client code does not need to worry about destroying this object.

		getValue

	Signature:
	const std::string getValue(const std::string & key)

	Description:
	Return the value associated to the given key. The key is the name of the parameter associated to the value, like inst:cc.filterA. If the key is not present, it returns NULL

	Parameters:
	key the name of the parameter whose value we need to retrieve

	Returns:
	The value associated to the given key or NULL if there is no value associated for the key in the current configuration.

		getKeys

	Signature:
	vector<std::string> getKeys() const

	Description:
	Return the keys contained in the configuration. If the configuration does not contain any key, an empty vector is returned.

	Parameters:
	none

	Returns:
	A vector of strings representing the keys contained in the configuration. An empty list is returned if no keys are present.

		getSize

	Signature:
	int getSize() const

	Description:
	Return the number of parameters contained in this configuration.

	Parameters:
	none

	Returns:
	The total number of parameters contained in this configuration.

A smart pointer to a HandlerResponse is returned whenever the handle method is invoked. HandlerResponse is an object that contains an enumerated response type and a string message when an error is produced. The HandlerResponse is used to indicate the end of the ACM acceptance phase.
Table 9 lists the different response types provided in the C++ API. The enumerated type is called Response. The values are defined in the HandlerResponse class, so a fully qualified enumerated value would be giapi::HandlerResponse::ACCEPTED, for instance. Since implementers of the HandlerResponse interface must include the <giapi/HandlerResponse.h> header file, there is no need for additional headers.

	Handler Response Name
	Enum Value
	Description

	preset accepted
	ACCEPTED
	Receiver evaluated the request. Returns ACCEPTED when the actions can be started immediately. This is the success response for the preset activity.

	actions started
	STARTED
	Receiver evaluated the request (preset) and started the actions successfully. This is the one success response for the start and preset/start activity (the other being COMPLETED).

	actions completed
	COMPLETED
	Receiver evaluated the request (preset) started and completed the actions. This is reserved for short commands that don’t move devices. This is one success response for the start and preset/start activity (the other being STARTED).

	error
	ERROR
	Request ended with an error. All activities can return ERROR.

[bookmark: _Ref65570250]Table 9: Response types and descriptions
In order to simplify the memory management of newly instantiated HandlerResponse objects, the GIAPI encapsulates the use of these objects in smart pointers wrappers. The handle method returns a smart pointer containing the HandlerResponse objectaHandH`. This smart pointer is referred as a pHandlerResponse in the GIAPI context, which is just type definition to the appropriate data structures (see section 3.5 for details about this convention). The HandlerResponse class simplifies this process by providing two factory methods to initialize smart pointers.
The first factory method takes as an argument the Response type to construct the instance. Here is the signature of that method:

		create

	Signature:
	static pHandlerResponse create(const Response type);

	Description:
	Static factory for a HandlerResponse of the given Response type

	Parameters:
	type The Response type of the HandlerResponse to be instantiated.

	Returns:
	A pHandlerResponse, a smart pointer referring to a HandlerResponse object. Since these objects cannot be modified by the user (immutable), this call can return the same instance when the same argument is used.

Here is an example of how the handler code could look like:

pHandlerResponse handle(command::ActionId id,
 command::SequenceCommand sequenceCommand,
 command::Activity activity,
 pConfiguration config) {
 //handle the sequence command
 …
 //construct handler response. Notice the use of the factory method
 pHandlerResponse response = HandlerResponse::create(HandlerResponse::ACCEPTED);
 return response;
}

The above example illustrates the first factory method in the HandlerResponse, Additionally, the C++ Language glue provides another factory constructor that takes as an argument a string and will instantiate an error handler response with a given message. The signature of that method is as follows:

		create

	Signature:
	static pHandlerResponse createError(const std::string & msg);

	Description:
	Static factory for an error HandlerResponse. The response type is set to ERROR and the error message is stored.

	Parameters:
	msg The error message to be used for this error HandlerResponse.

	Returns:
	A smart pointer to a new allocated error HandlerResponse object.

Since the HandlerResponse interface does not provide methods to modify an instance of the class, this last factory method is the mechanism to instantiate error HandlerResponse objects. An attempt to initialize an error HandlerResponse using the HandlerResponse.create()method is a mistake, since the error message will not get initialized.

In order to get the error message associated to an ERROR HandlerResponse, the getMessage() method is provided in the HandlerResponse class:

		getMessage

	Signature:
	std::string getMessage() const

	Description:
	Return the message associated to this handler response. If the handler is not ERROR, the returned string will be an empty string.

	Parameters:
	None

[bookmark: _Ref64821759][bookmark: _Ref64898427][bookmark: _Toc252518835]Subscribing to Sequence Commands other than Apply
[bookmark: _Ref64979025]The previous section presented the Sequence Command Handler. This section shows how to associate an SCH with a sequence command. This section discusses sequence command other than apply. See section 10.7 of [2] for more information about subscribing to other sequence commands.
It is a requirement that a Sequence Command Handler is registered for each one of the sequence commands (See section 10.7 of [2]). If a particular Sequence Command is of no interest to an instrument, a Sequence Command Handler that returns immediately an ACCEPTED HandlerResponse should be provided.
To subscribe to a sequence command with a handler, the subscribeSequenceCommand method in the CommandUtil class is used.

		subscribeSequenceCommand

	Signature:
	static int subscribeSequenceCommand(command::SequenceCommand id
 command::ActivitySet activities,
 pSequenceCommandHandler handler) throw (GiapiException)

	Description:
	Associates the given handler to the sequence command specified by the id argument.
The activities argument allows different handlers for different activities. For instance, one handler can implement only PRESET and another START.

	Parameters:
	id The SequenceCommand enumerated type that identifies the sequence command to which a handler will be associated.
activities Enumerated type representing the set of Activities the handler will be associated with for the given prefix.
handler. Pointer to a concrete implementation of a SequenceCommandHandler that will be associated to the given sequence command and actions. The most recently registered sequence command handler for a sequence command will be used.

	Returns:
	gapi::status::OK if the subscription succeeds. Otherwise, it returns giapi::status::ERROR.

	Throws:
	GiapiException in case there is a problem with the underlying mechanisms to execute the subscribe operation

A few notes regarding the subscribeSequenceCommand method
command::SequenceCommand is the name of the type for the enumerated values in Table 6
The second argument, command::ActivitySet is the name of the type for the enumerated values from Table 7. This is to support using different handlers for different activities.
The handler is passed as a smart reference pointer. The pSequenceCommandHandler type is defined in the <giapi/SequenceCommandHandler.h> header file.
To simplify the instantiation of SequenceCommandHandler instances and to avoid potential resource leaks, the following pattern is suggested when using a handler called MyHandler.
1. Never ever type MyHandler * in the client code. In other words, do not declare nor use direct pointers to the handler.
2. Define the constructor(s) for the sequence command handler as private, to prevent direct instantiation of new handlers in the client code
3. Provide a static factory to instantiate the handler, returning pSequenceCommandHandler objects.
The following code snippet illustrates this pattern. It defines a SequenceCommanHandler called MyHandler, providing a static factory to instantiate it.

class MyHandler: public SequenceCommandHandler {	
public:
 virtual pHandlerResponse handle(command::ActionId id,
	 command::SequenceCommand sequenceCommand,
	 command::Activity activity, pConfiguration config) {
 pHandlerResponse response;
 //Handle the command, set the response
 ...
 return response;
 }
 static pSequenceCommandHandler create() {
 pSequenceCommandHandler instance(new MyHandler());
 return instance;
 }
private:
 MyHandler() {}
};
Notice that with this design, code like MyHandler * handler = new MyHandler() (direct pointer manipulation) is prohibited at compile time. In order to instantiate MyHandler objects and register them with a sequence command, the client code will need to use the factory provided, as in the following example:
pSequenceCommandHandler handler = MyHandler::create();
CommandUtil::subscribeSequenceCommand(command::REBOOT,
 command::SET_PRESET_START, handler);
[bookmark: _Ref65841688][bookmark: _Toc252518836]Arguments in Sequence Commands
The observe, reboot and engineering sequence commands (in addition to apply) take arguments. The arguments for a sequence command are in the Configuration that is passed to the handle method in the SequenceCommandHandler. To read a specific argument, the instrument must know the keyword for the argument.
The keywords are defined as static constant strings in the Configuration class. The following table lists the argument keywords and the sequence commands that use them:

	Argument Keyword
	Sequence Command
	Description
	Values

	DATA_LABEL
	OBSERVE
	The data label the observe sequence command will produce. The argument should be used to create the file for the dataset in the form datalabel.fits.
	String value

	REBOOT_OPT
	REBOOT
	Used within the GIAPI on Linux. The argument allows specifying different actions the instrument should take when the reboot command is received.
	REBOOT, GMP, NONE

	COMMAND_NAME
	ENGINEERING
	Used by the instrument to determine which of its engineering commands to execute.
	String value

	…
	ENGINEERING
	The engineering sequence command can take any number of optional parameters. They will be passed to the instrument to be used as parameters for the selected engineering command. If the parameters needed are of a different type, it is the instrument software’s responsibility to parse the string and do the conversion.
	String value

Table 10: Keywords to identify arguments in sequence commands
The valid values for the reboot sequence command (REBOOT, GMP, NONE) are also declared in the Configuration class, for convenience.
The following code snippet illustrates the handle method of an observe sequence command handler. This handler gets the data label from the configuration and stores it in a class member variable for later use.

pHandlerResponse handle(command::ActionId id,
 command::SequenceCommand sequenceCommand,
	 command::Activity activity, pConfiguration config) {

 if (sequenceCommand == command::OBSERVE) {
 //Get the data label argument in the observe command
 _datalabel = config->getValue(Configuration::DATA_LABEL);
 }
 pHandlerResponse response;
 //prepare response
 ...
 return response;
}
[bookmark: _Ref62637303][bookmark: _Toc252518837]Subscribing to the Apply Sequence Command
Handling the apply command is potentially more complex. A configuration passed to an instrument from the OCS may have parts that are handled by different components within the instrument implying different handlers.
To support this, the C++ Language glue provides the subscribeApply method in the CommandUtil class. The following is the description of this method:

		subscribeApply

	Signature:
	static int subscribeApply(const std::string & prefix,
 command::ActivitySet activities,
 pSequenceCommandHandler handler) throw (GiapiException)

	Description:
	Associates the given handler to the configuration prefix specified and array of Activity elements.
When the system receives a configuration it will split it up according to the registered handlers and pass each the part of the configuration that is registered to handle.
The ActivitySet argument allows different handlers for different activities. For instance, one handler can implement only PRESET and another START.

	Parameters:
	prefix the configuration prefix this handler will take care of. When a configuration is received by the system, it will be split and the part indicated by this prefix will be passed to the handler.
activities Enumerated type representing the set of Activities the handler will be associated with for the given prefix.
handler. Pointer to a concrete implementation of a SequenceCommandHandler that will be associated to the given sequence command and actions. The most recently registered sequence command handler for a sequence command will be used.

	Returns:
	gapi::status::OK if the subscription succeeds. Otherwise, it returns giapi::status::ERROR.

	Throws:
	GiapiException in case there is a problem with the underlying mechanisms to execute the subscribe operation

The following example code shows how to split the handler of configurations between a handler for DC and a handler for CC:

CommandUtil::subscribeApply("NICI:CC", giapi::command::SET_PRESET_START, handler1); CommandUtil::subscribeApply("NICI:DC", giapi::command::SET_PRESET_START, handler2);
In this case the preset and start activities for NICI:CC will be handled by handler1 while preset and start for NICI:DC will be handled by handler2. The handler1 and handler2 are SequenceCommandHandler smart pointers, and should have been instantiated using a similar mechanism to what described in section 5.3.
[bookmark: _Ref62633784][bookmark: _Toc252518838]Updating Gemini with Action Status
The last concept needed for handling commands is the posting of completion information to the GMP for actions that do not complete immediately. This case is triggered when the SequenceCommandHandler returns STARTED in the HandlerResponse. This case will occur most frequently in the CC when hardware devices must be moved to match the requested configuration. In this case, the SCH checks that it can start the actions, starts them and returns a STARTED response. Later, when the actions complete—either successfully or with an error—some software component must notify the GMP of the completion status of the actions associated with the original ActionID.
The method call in the GIAPI to send completion information is provided in the CommandUtil class, and has the following signature:

		postCompletionInfo

	Signature:
	static int postCompletionInfo(command::ActionId id,
 pHandlerResponse response) throw (GiapiException)

	Description:
	Post completion information to the GMP for actions that do not complete immediately. This case is triggered when a SequenceCommandHandler returns STARTED in the HandlerResponse. When the actions complete successfully or with an error, the system will notify the GMP of the completion status of the actions associated with the original ActionId using this call.

	Parameters:
	id the original ActionId associated to the actions for which we are reporting completion info.
response contains the completion state associated to the ActionId. Valid response type are only COMPLETED and ERROR. In case the response is ERROR, a message should be provided in the HandlerResponse object

	Returns:
	gapi::status::OK if the post succeeds. Otherwise, it returns giapi::status::ERROR. giapi:status:ERROR is returned also if the response is not COMPLETED or ERROR, or if the response is ERROR and no message is provided.

	Throws:
	GiapiException in case there is a problem with the underlying mechanisms to execute the post operation

In a very simple application, the handle method is invoked for a given registered sequence command handler. The ActionId is stored:

pHandlerResponse handle(command::ActionId id,
 command::SequenceCommand sequenceCommand,
 command::Activity activity,
 pConfiguration config) {
 //stores the action id.
 _id = id;
 //handling code here, most likely in a different thread
 ...
 //construct a handler response, in this case assuming actions started.
 pHandlerResponse response = HandlerResponse::create(HandlerResponse::STARTED);
 return response;
}
Later, when the instrument code wants to send completion info from the execution thread that started the actions, it will use the stored ActionId in the postCompletionInfo :

 //construct a handler response with either ERROR or COMPLETED
 pHandlerResponse response = HandlerResponse::create(HandlerResponse::COMPLETED);
 //send completion info
 CommandUtil::postCompletionInfo(_id, response);
Note this is a simplified example used only for illustration. In a real-life application the instrument code should report completion info using the postCompletionInfo only when all the handler’s ongoing actions are completed and always using the most recent ActionID. Completion of the most recent ActionID means that actions with all other previous ActionIDs are also completed. See section 10.9 of [2] for a complete discussion of command completion.
[bookmark: _Ref25078376][bookmark: _Ref25078381][bookmark: _Toc252518839]Interacting with Gemini Systems
This section describes how an instrument interacts with other Gemini Systems using the GIAPI C++ Language Glue. This section parallels section 11 of [2].
[bookmark: _Toc252518840][bookmark: _Ref23926066]General Overview
GIAPI provides methods for instrument code to interact with Gemini Systems in a controlled way. The following lists the supported operations currently available through the C++ Language Glue:
1. Monitor information from Gemini EPICS Channels
2. Provide wavefront sensor corrections to the PCS
3. Provide access to the TCS context to produce WCS information
Monitoring a Gemini EPICS channel requires registering an implementation of the EpicsStatusHandler interface. The interface defines a channelChanged method, which will be invoked every time the EPICS channel is updated. The argument of this method is an EpicsStatusItem that provides access to the EPICS channel data. Specifics of this functionality are described in section 6.2
Wavefront sensor corrections to the PCS are supported through a single call in the GIAPI C++ Language glue, GeminiUtil::postPCSUpdate, which takes an array of doubles and passes them to the PCS. This method is described in section 6.4.
The TCS context is represented in the GIAPI C++ Language glue as a structure called TCSContext. To get an update, a reference to this structure is passed to the GeminiUtil::getTCSContext method in the C++ Language glue. Details about the TCSContext structure and this method are described in section 6.5.
The methods to interact with Gemini Systems are provided by the GeminiUtil utility class. The following are the main classes the instrument code will need to work with to access these services and the C++ headers where they are defined.

	Class
	Description
	C++ header

	GeminiUtil
	Utility class acting as a façade to the different Gemini Systems.
	<giapi/GeminiUtil.h>

	EpicsStatusHandler
	Interface for EPICS status handlers
	<giapi/EpicsStatusHandler.h>

	EpicsStatusItem
	Interface to access the content of a monitored EPICS channel.
	<giapi/EpicsStatusItem.h>

	TCSContext
	C++ structure with the information of the TCS context
	<giapi/giapi.h>

Table 11: Main classes to provide interaction with Gemini Systems in the C++ Language glue

[bookmark: _Ref64983052][bookmark: _Ref64983057][bookmark: _Toc252518841]Receiving Status Information from a Gemini System
In this use case, the instrument needs to subscribe to a status item that is published by one of the EPICS-based systems—typically the TCS or one of its subsystems.
Instrument code needs to provide an implementation of the EpicsStatusHandler interface. The interface defines only one method named channelChanged. The following is the signature of the channelChanged method in the C++ Language glue

		channelChanged

	Signature:
	void channelChanged(pEpicsStatusItem item)

	Description:
	Callback invoked when the EPICS status is updated. Instrument code will use the item in this method to access the monitored EPICS status item data

	Parameters:
	item A smart pointer to the EPICS status item being monitored.

	Returns:
	void

[bookmark: OLE_LINK9][bookmark: OLE_LINK10]The pEpicsStatusItem is a smart pointer definition to an EpicsStatusItem interface. This interface allows the handler to access the data contained in the monitored channel. The interface provides the following methods:

		getName

	Signature:
	const std::string getName() const

	Description:
	Return the name of the EPICS channel represented by this status item

	Parameters:
	none

	Returns:
	Name of the EPICS channel represented by this EPICS status item

		getType

	Signature:
	type::Type getType() const

	Description:
	Return the data type of the values contained in this EPICS status item

	Parameters:
	none

	Returns:
	The data type of the value or values contained in this EPICS status item. Types are defined under the giapi::type namespace in the <giapi/giapi.h> header file

		getCount

	Signature:
	int getCount() const

	Description:
	Return the number of elements stored in the data part of this epics status item. All the elements are of the same data type, as returned by the getType method.

	Parameters:
	none

	Returns:
	Number of elements stored in the data part of this EPICS status element

		getData

	Signature:
	const void * getData() const

	Description:
	Provides access to the data associated to the EPICS status item.

	Parameters:
	none

	Returns:
	Pointer to the data contained in this EPICS status item.

By using the getType and getCount methods, the client code can determine how to interpret the data contained in the data section of the EpicsStatusItem.
The following are auxiliary methods available in the EpicsStatusItem interface to help decoding the data.

		getDataAsString

	Signature:
	const std::string getDataAsString(int index) const
 throw (InvalidOperation)

	Description:
	Read the data element at the specified index position as a string

	Parameters:
	index index of the element to retrieve. The index must be in the range 0 <= index < getCount()

	Returns:
	Data element in the specified index as a standard string.

	Throws:
	InvalidOperationException if the status item type is not a string or the index provided is greater or equals to the number of elements in this status item (as returned by the getCount()method)

		getDataAsInt

	Signature:
	int getDataAsInt(int index) const
 throw (InvalidOperation)

	Description:
	Read the data element at the specified index position as an integer

	Parameters:
	index index of the element to retrieve. The index must be in the range 0 <= index < getCount()

	Returns:
	Data element in the specified index as an integer value.

	Throws:
	InvalidOperationException if the status item type is not an integer or the index provided is greater or equals to the number of elements in this status item (as returned by the getCount()method)

		getDataAsFloat

	Signature:
	float getDataAsFloat(int index) const
 throw (InvalidOperation)

	Description:
	Read the data element at the specified index position as a float value

	Parameters:
	index index of the element to retrieve. The index must be in the range 0 <= index < getCount()

	Returns:
	Data element in the specified index as a float value.

	Throws:
	InvalidOperationException if the status item type is not a float or the index provided is greater or equals to the number of elements in this status item (as returned by the getCount()method)

		getDataAsDouble

	Signature:
	double getDataAsDouble(int index) const
 throw (InvalidOperation)

	Description:
	Read the data element at the specified index position as a double value

	Parameters:
	index index of the element to retrieve. The index must be in the range 0 <= index < getCount()

	Returns:
	Data element in the specified index as a double value.

	Throws:
	InvalidOperationException if the status item type is not a double or the index provided is greater or equals to the number of elements in this status item (as returned by the getCount()method)

		getDataAsByte

	Signature:
	unsigned char getDataAsByte(int index) const
 throw (InvalidOperation)

	Description:
	Read the data element at the specified index position as a byte value

	Parameters:
	index index of the element to retrieve. The index must be in the range 0 <= index < getCount()

	Returns:
	Data element in the specified index as a byte value.

	Throws:
	InvalidOperationException if the status item type is not a byte or the index provided is greater or equals to the number of elements in this status item (as returned by the getCount()method)

Once the EpicsStatusHandler is defined, it can be subscribed to or unsubscribed from an actual EPICS channel using methods available in the GeminiUtil class. To register a handler, the following method is used:

		subscribeEpicsStatus

	Signature:
	static int subscribeEpicsStatus(const std::string & name,
 EpicsStatusHandler handler) throw (GiapiException)

	Description:
	Register a handler to receive updates when the specified EPICS status item is updated.
This method is called with the name of the EPICS status item and a handler that will be called when the EPICS channel publishes an update.

	Parameters:
	name Name of the EPICS status item that will be monitored.
handler Handler that will be called when an update is published. The most recently registered EPICS status handler will be used.

	Returns:
	gapi::status::OK if the subscription was successful. Otherwise, it returns giapi::status::ERROR.

	[bookmark: OLE_LINK18][bookmark: OLE_LINK19]Throws:
	GiapiException in case there is an error accessing the GMP to register to receive updates for the given epics status item

In order to unregister a handler, the following method is available:

		unsubscribeEpicsStatus

	Signature:
	[bookmark: OLE_LINK15][bookmark: OLE_LINK16]static int unsubscribeEpicsStatus(const std::string & name)
 throw (GiapiException)

	Description:
	Unregister any handlers that might be associated to the given Epics status item.

	Parameters:
	name Name of the Epics status item that no longer will be monitored.

	Returns:
	gapi::status::OK if the deregistration was successful. Otherwise, it returns giapi::status::ERROR.

	Throws:
	GiapiException in case there is an error accessing the GMP to unregister to receive updates for the given epics status item

Note the subscribeEpicsStatus method receives as an argument a smart pointer to an EpicssStatusHandler. The pEpicsStatusHandler is defined in the <giapi/EpicsStatusHandler.h>. To avoid potential resource leaks during the instantiation of EpicsStatusHandler instances, the following pattern is suggested to implement an EpicsStatusHandler called MyHandler.
1. Never ever type MyHandler * in the client code. In other words, do not declare nor use direct pointers to the handler.
2. Define private constructor(s) for the EpicsStatusHandler, to prevent direct instantiation of new handlers in the client code
3. Provide a static factory to instantiate the handler, returning pEpicsStatusHandler objects, a smart pointer object that will refer to an actual EpicsStatusHandler instance.
A simple example will help to illustrate this idea. The following code snippet defines an EpicsStatusHandler called MyHandler, providing a static factory to instantiate it.

 class MyHandler: public EpicsStatusHandler {	
 public:
 virtual void channelChanged(pEpicsStatusItem item) {
 //do something with the item
 }
 static pEpicsStatusHandler create() {
 pEpicsStatusHandler instance = pEpicsStatusHandler(new MyHandler());
 return instance;
 }
 private:
 MyHandler() {}
 };
Using this pattern, an instrument that needs to be kept up to date with the value of the telescope altitude can use the following code:

 pEpicsStatusHandler handler = MyHandler::create();
 GeminiUtil::subscribeEpicsStatus("tcs:sad:currentEl", handler);
Notice that with this design, code like MyHandler * handler = new MyHandler() (direct pointer manipulation) is prohibited at compile time.
In this example, the method channelChanged will be called as the current altitude changes with an updated pEpicsStatusItem that will allow the handler code to read the altitude value.
[bookmark: _Toc252518842]Access to last known EPICS values
The GIAPI provides a getChannel method that can get the latest known value of a specific channel. Unlike the subcription mechanism described in section 6.2, the method will provide only the current value rather than updates. This can be useful e.g. in cases where a channel does not change very often.
The getChannel method has the following signature:
		getChannel

	Signature:
	[bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK17]pEpicsStatusItem getChannel(const std::string & name, long timeout)
 throw (GiapiException)

	Description:
	Called to retrieve an EPICS status supported by the GMP. Instrument code can use the return value to access the latest EPICS status item data

	Parameters:
	name The name of the requested channel
[bookmark: _GoBack]timeout Time to wait for a response in milliseconds

	Throws:
	GiapiException in case there is an error accessing the GMP or the requested EPICS channel

	Returns:
	pEpicsStatusItem

[bookmark: OLE_LINK13][bookmark: OLE_LINK14]The pEpicsStatusItem is a smart pointer definition to an EpicsStatusItem interface as described in section 6.2
[bookmark: _Ref64983086][bookmark: _Toc252518843]Provide Wavefront Sensor corrections to the PCS
Some instruments with on-board wave front sensors need to provide wavefront corrections to the Primary Control System (PCS). These wavefront updates are in the form of a slowly changing set of Zernike coefficients.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The GIAPI provides a postPcsUpdate method the instrument can use to update the PCS through the TCS. This method is available in the GeminiUtil class and has the following signature:

		postPCSUpdate

	Signature:
	static int postPcsUpdate(double zernikes[], int size)
[bookmark: OLE_LINK20][bookmark: OLE_LINK21] throw (GiapiException)

	Description:
	Offload wavefront corrections to the Primary Control System (PCS). These wavefront sensor updates are in the form of slowly changing set of zernike coefficients.

	Parameters:
	zernikes array of zernike coefficients
size zernike coefficients array size.

	Returns:
	giapi::status::OK if the zernikes were offloaded correctly to the PCS or giapi::status::ERROR if there was a problem in the operation.

	Throws:
	GiapiException in case there is an error accessing the GMP to post the PCS update

[bookmark: _Ref64983110][bookmark: _Toc252518844]Access to the TCS Context
Production of WCS information is done in the instrument software by using values in a structure fetched from the TCS called the TCS Context. The WCS conversion and TCS Context is described in [5]. An instrument-specific calculation is then done to produce the values for the WCS header items. These calculations usually involve coordinate transformations that we support though C-library function calls.
The GIAPI C++ Language glue provides the following method in the GeminiUtil class that can be called to fetch the TCS context:

		getTcsContext

	Signature:
	static int getTcsContext(TcsContext& ctx, long timeout) throw (GiapiException)

	Description:
	Provides the TCS Context information at the time of the call. The TCS context provides information about the TCS that are needed to perform WCS conversions.

	Parameters:
	ctx Reference to the TcsContext structure. The content of this structure will be filled in by this call.
timeout Time in milliseconds to wait for the TCS context to be retrieved. If not specified, the call will block until the GMP replies back or an exception occurs.

	Returns:
	giapi::status::OK if the TcsContext was filled in properly. giapi::status::ERROR if there was an error getting the TcsContext.

	Throws:
	GiapiException in case there is an error accessing the GMP to obtain the TCS context

getTcsContext can also be used when the instrument needs to make occasional calculations unrelated to WCS that require much of the information available in the TCS context.
Table 12 contains the elements present in the TcsContext structure in the GIAPI C++ Language glue. This structure is defined in <giapi/giapi.h> header file. All the elements are doubles. It is possible to provide a subset of the most useful information depending on builder need.

	Context Index
	Context Item Name
	Description

	0
	time
	Time stamp (Gemin Raw Time)

	1-3
	x, y, z
	Cartesian elements of mount pre-flexure az/el

	4
	tel.fl
	Telescope focal length (mm)

	5
	tel.rma
	Rotator mechanical angle (rads)

	6
7
	tel.an
tel.aw
	Azimuth axis tilt NS (rads)
Azimuth axis tilt EW (rads)

	8
	tel.pnpae
	Az/el non-perp (rads)

	9
10
	tel.ca
tel.ce
	Left-right collimation (rads)
Up-down collimation (rads)

	11-24
	aoprms
	Target independent apparent-to-observed parameters

	25-30
	m2xy
	M2 tip/tilts

	31
32
	po.mx
po.my
	Mount pointing origin in X
Mount pointing origin in Y

	33
34
35
36
37
38
	ax
ay
bx
by
cx
cy
	Source chop A pointing origin in X
Source chop A pointing origin in Y
Source chop B pointing origin in X
Source chop B pointing origin in Y
Source chop C pointing origin in X
Source chop C pointing origin in Y

[bookmark: _Ref52271637]Table 12: Contents of the TCS Context as received directly from the TCS
[bookmark: _Ref65164832][bookmark: _Ref65164982][bookmark: _Toc252518845]Using Gemini Services
Gemini Services are features of the Gemini environment that most instruments need. This section describes the currently available Gemini services. This discussion parallels the discussion in section 12 of [2].
[bookmark: _Toc252518846]General Overview
The following is a list of the current supported services in the GIAPI, and a reference to the sections in which they are described:
1. Logging Service (Section 7.2). Methods to support process logging and system logging
2. Access to the observatory time (Section 7.3). Allows access to the current time that is standardized and synchronized across the observatory
3. Access to GIAPI properties (Section 7.4). Provides access to configuration attributes to the builder through the GIAPI properties interface.
The methods to access the GIAPI Gemini Services are provided in the ServicesUtil class. This class is defined in the <giapi/ServicesUtil.h> header file.
[bookmark: _Ref64983232][bookmark: _Toc252518847]Logging Service
There are two supported logging approaches in the GIAPI: process logging and system logging. Process logging is the type of logging used to debug a process. System logging is a service supported by the GMP that allows any process to contribute to a system log.
[bookmark: _Toc252518848]Process Logging
GIAPI standardizes the usage of the Apache log4xx library for logging that is local to a single process. log4cxx is C++ port of the Java Log4j library. log4cxx attempts to mimic log4j usage as much as the language will allow and to be compatible with log4j configuration and output formats. Information about log4xx can be found in [7].
[bookmark: _Toc252518849]System Logging
GIAPI allows any process in the instrument to send a logging message that will then be merged into an instrument-wide log maintained by the GMP. As with Process Logging, System Logging will be tied to log levels and will be configurable at runtime to enable or disable logging specific log levels.
In the C++ Language Glue, this capability is provided by the systemLog call in the ServicesUtil class.
		systemLog

	Signature:
	static void systemLog(log::Level level, const std::string & msg)
 throw (GiapiException)

	Description:
	Logs a message that will be merged into an instrument-wide log, using the given log level.

	Parameters:
	level The logging level identifier for this log message, such as giapi::log::WARNING.

	Returns:
	void

	Throws:
	GiapiException in case there is an error accessing the GMP to log the message

The supported logging levels are INFO, WARNING and SEVERE. These are enumerated types defined in the log namespace. They are declared in the <giapi/giapi.h> header file.
For example the following call:

 ServicesUtil::systemLog(log::INFO, "WCS information was incomplete. Missing CTYPE1");
will log the message at the INFO level. If the instrument-wide log is configured to log at the INFO level, this message will then be merged into the log.
[bookmark: _Ref52363308][bookmark: _Toc252518850][bookmark: _Ref25163625][bookmark: _Ref25163628]Access to Observatory Time
The C++ Language glue provides one method to access the time regardless of the internal implementation (either software or hardware based). The single required method returns the UTC time as the number of milliseconds since January 1, 1970. The following is the method description:
		getObservatoryTime

	Signature:
	static long64 getObservatoryTime() throw (GiapiException)

	Description:
	Returns the current observatory time in milliseconds. The granularity of the returned value depends on the underlying operating system and may be larger.

	Parameters:
	none

	Returns:
	Number of milliseconds between the current observatory time and midnight, January 1, 1970 UTC as a 64-bit long integer

	[bookmark: _Ref63509554]Throws:
	GiapiException in case there is an error accessing the GMP to get the observatory time

Since a 64-bit integer is needed to represent the returned value by this call, a long64 type is used. Since 64-bit signed integers are not part of the ANSI C++ standard, this definition is compiler specific. The definition is in the <giapi/giapi.h> header file.
[bookmark: _Ref64983246][bookmark: _Toc252518851]GIAPI Configuration Properties
[bookmark: _Ref24617933][bookmark: _Ref24617937][bookmark: _Ref24618005]The GIAPI can provide configuration attributes to the builder through the GIAPI properties interface. A property is a string value associated with a string key. In the C++ Language glue, the following is the method provided in the ServicesUtil class to access GIAPI properties.

		getProperty

	Signature:
	static std::string getProperty(const std::string &key,
 long timeout = 0)
 throw (GiapiException)

	Description:
	Returns the GIAPI property indicated by the specified key.

	Parameters:
	key the name of the GIAPI property to request
timeout time (in milliseconds) to wait for the GMP to reply back a property. If not specified, it will block until the GMP replies.

	Returns:
	The string value of the GIAPI property, or an empty string if there is no property with that key.

	Throws:
	GiapiException in case there is an error accessing the GMP to get the required property. A TimeoutException is generated in case the timeout specified expires without having an answer from the GMP

An example:
 std::string host = ServicesUtil::getProperty("GMP_HOST_NAME");
In this example, the getProperty call returns the host name of the machine running the GMP.

The following are the keys currently defined. These will be expanded in the future as needed.

	Property Key
	Description

	GMP_HOST_NAME
	Host name of the machine where the GMP is running

	DHS_ANCILLARY_DATA_PATH
	The path to use to write ancillary data files.

	DHS_SCIENCE_DATA_PATH
	The path to use to write science data files.

	DHS_INTERMEDIATE_DATA_PATH
	The path to use to write intermediate data files.

	DEFAULT
	The default key, associated to the default value. The default value is an empty string.

[bookmark: _Ref64895208]Table 13: GIAPI Properties in the C++ Language Glue

[bookmark: _Ref65164779][bookmark: _Ref65164920][bookmark: _Toc252518852]Providing Science Data to Gemini
This section discussed the C++ GIAPI methods related to writing instrument science data. This section provides the C++ information for the features described in section 13 of [2].
[bookmark: _Toc252518853]General overview
The transfer of data from instruments to the DHS has been simplified for Aspen instruments by using a high-performance Network Attached Storage (NAS) system at both telescopes known as the Gemini Data Storage Network (GDSN). Instruments directly write data to a shared disk, reducing the complexity of the data transfer code builders must produce.
The actual writing of a dataset or ancillary file is simple: use the FITS library to write internal format data as a valid FITS file (see [3]) on the GDSN. In C++ the library chosen for this purpose is the CFITSIO or CCFITS [4](http://heasarc.gsfc.nasa.gov/docs/software/fitsio/fitsio.html). Files will need to be specified and written to use the capabilities of this standard library.
The shared disk mount point where data files must be written is a GIAPI property. Table 13 lists all the properties that can be used to retrieve different mount points. For instance, the following call:
 std::string path = ServicesUtil::getProperty("DHS_SCIENCE_DATA_PATH");
will retrieve the path to store science data files. The file name is generated by the observe sequence command DATA_LABEL parameter (see section 5.3.1); the instrument normally just adds the .fits extension to its value.
The other step required to integrate dataset writing with Gemini is to notify that the execution of an observe sequence command has reached and started specific phases of the process.
The C++ Language glue provides a postObservationEvent method to send notifications (called Observation Events) when specific parts of the execution of the observe sequence command are reached. Section 8.2 discusses how to send observation events through the C++ Language glue.
In addition to normal science datasets, GIAPI provides methods to support handling of ancillary files and intermediate files. These are covered in section 8.3 and 8.4 respectively.
The following table summarizes the classes and data types used in the GIAPI C++ language glue to support data handling.

	Class/Type
	Description
	C++ header

	DataUtil
	Provides methods to send observation events and notify of ancillary and intermediate files
	<giapi/DataUtil.h>

	data::ObservationEvent
	Enumerated type defining the different Observation Events supported by the C++ Language glue.
	<giapi/giapi.h>

Table 14: Classes and data types to support data handling
[bookmark: _Ref64991890][bookmark: _Toc252518854]Sending Observations Events with GIAPI
The observation events supported in the C++ Language glue are listed in Table 15. The table has a complete description of each phase and indicates some of the actions that Gemini takes in response to the delivery of the events. These events are represented as enumerated types defined in the data namespace in the <giapi/giapi.h> header. Therefore, a fully qualified name of one event would be giapi::data::OBS_START_ACQ.

	Event Time
	GIAPI OEvt
	Description

	T1
	OBS_PREP
	Observation Event sent as instrument starts preparation for starting acquisition of a dataset.

	T2
	OBS_START_ACQ
	Observation Event sent just before data acquisition starts.

	T3
	OBS_END_ACQ
	Observation Event send when the requested acquisition has completed.

	T4
	OBS_START_READOUT
	Observation Event indicates that the data is being transferred from the detector or other activities needed to write data.

	T5
	OBS_END_READOUT
	Observation Event indicates readout or write preparations have completed.

	T6
	OBS_START_DSET_WRITE
	Observation Event indicates that the instrument has started writing the dataset to the GDSN.

	T7
	OBS_END_DSET_WRITE
	Observation Event indicates that the instrument has completed writing the dataset to GDSN.

[bookmark: _Ref64896911]Table 15: Observation events in the C++ Language Glue
The observation events in Table 15 are listed in the order they are sent during the execution of an observe sequence command. A detailed description of observing events can be found in [2].
As each phase is reached, the instrument sends an Observation Event to Gemini with the postObservationEvent method available in the DataUtil class.

		postObservationEvent

	Signature:
	static int postObservationEvent(data::ObservationEvent event,
 const std::string & datalabel)
 throw (GiapiException)

	Description:
	Send an observation event associated to the given data label to the GMP. This method should be called by the instrument at each phase of the execution of an observe sequence command.

	Parameters:
	event The observation event to be sent, such as data::OBS_START_ACQ
datalabel the data-label that is being generated by the observe command.

	Returns:
	giapi::status::OK if the event was dispatched properly or giapi::status::ERROR if there is a problem.

	Throws:
	GiapiException in case there is an error accessing the GMP to post the given observation event

As an example:
 DataUtil::postObservationEvent(data::OBS_START_ACQ, datalabel);
Where datalabel is the label obtained in the SequenceCommandHandler of the observe sequence command as described in section 5.3.
[bookmark: _Ref52257773][bookmark: _Ref52257780][bookmark: _Toc252518855]Ancillary Files and GIAPI
Ancillary files are stored as FITS files in the GSDN. In the C++ Language glue, the instrument will write the ancillary file to the GDSN and post an Observation Event notifying Gemini of the new file. The event can be posted at any time, not just during an Observe.
This is the method in the C++ Language glue to post ancillary files events:

		postAncillaryFileEvent

	Signature:
	static int postAncillaryFileEvent(const std::string &filename,
 const std::string &datalabel)
 throw (GiapiException)

	Description:
	Send an ancillary file event associated to the given datalabel to the GMP.

	Parameters:
	filename name of the ancillary file
datalabel the data-label generated by an observe sequence command that will be associated to this ancillary file

	Returns:
	giapi::status::OK if the event was dispatched properly or giapi::status::ERROR if there is a problem.

	Throws:
	GiapiException in case there is an error accessing the GMP to post the given ancillary file event

Here is an example call:

 DataUtil::postAncillaryFileEvent("AOStats-20100222.fits", "GN-2010B-Q-2-1-003");
[bookmark: _Ref64992283][bookmark: _Toc252518856]Support for Intermediate Files
During the execution of an observe sequence command, the GIAPI C++ Language glue allows the builder to notify Gemini of the creation of intermediate FITS files. The method for alerting Gemini works similarly to the ancillary file method in the previous section.

		postIntermediateFileEvent

	Signature:
	static int postAncillaryFileEvent(const std::string &filename,
 const std::string &datalabel,
 const std::string &hint)
 throw (GiapiException)

	Description:
	Send an intermediate file event associated to the given data label to the GMP and with the given hint.

	Parameters:
	filename name of the intermediate file
datalabel the data-label generated by an observe sequence command that will be associated with this intermediate file
hint The hint can be used to indicate different types of intermediate files and is instrument dependant.

	Returns:
	giapi::status::OK if the event was dispatched properly or giapi::status::ERROR if there is a problem.

	Throws:
	GiapiException in case there is an error accessing the GMP to post the given ancillary event

[image: GIAPIGraffleFigures]The hint can be used to indicate different types of intermediate files. The hints are instrument dependent and should be published in ICD 16. For instance, a builder may wish to publish an “engineering” file for viewing in engineering mode and a display tool could be configured to only display “engineering” intermediate files. Here is an example:

DataUtil::postIntermediateFileEvent("NIFS-Coadds-20100222.fits",
 "GN-2011B-Q-3-1-043", "coadds");
The hint idea is preliminary and may require changes during initial use.
[bookmark: _Ref100917622][bookmark: _Toc252518857][bookmark: _Ref86243888]Error Handling and Fault Tolerance in the GIAPI C++ Language Glue
[bookmark: _Ref100917657]The GIAPI C++ Language glue provides some mechanism to facilitate handling of error conditions. The usage of these methods is intended to provide fault tolerance and auto-recovery options, in particular when the communication to the GMP is broken.
[bookmark: _Toc252518858]General Overview
Utility methods are provided in the GIAPI to register user provided error handlers that will be invoked when a communication problem is found. The methods to access the GIAPI Utility services are provided in the GiapiUtil class. This class is defined in the <giapi/GiapiUtil.h> header file.
The following are the main classes the instrument code will need to work with to access these utility methods and the C++ headers where they are defined.

	Class/Types
	Description
	C++ header

	GiapiUtil
	Collection of static methods to help dealing with errors and provide fault tolerance options.
	<giapi/GiapiUtil.h>

	GiapiErrorHandler
	Interface for GIAPI Error handlers
	<giapi/GiapiErrorHandler.h>

	giapi_error_handler
	Function pointer to represent an error handler
	<giapi/giapi.h>

Table 16: Main classes to provide interaction with the utility methods available in the C++ Language glue
[bookmark: _Toc252518859]Error Handlers for GMP communication problems
The GiapiUtil class provides a mechanism for client code to register handlers that will be invoked whenever the GMP communication is lost. This happens for instance if for some reason the GMP crashes and needs to be restarted. By using these methods, it is possible for a running application to recover graciously in case of this event.
If the communication to the GMP is lost for some reason, the GIAPI automatically will get an event and will try to re-establish the communication. Once the communication is available again, the application needs to re-establish the previous subscriptions it depended upon. For instance, if an application registered to receive the INIT sequence command, via the CommandUtil::subscribeSequenceCommand() method, that call needs to be invoked again if the GMP crashes and needs to be restarted.
To facilitate this, the GiapiUtil class provides two mechanisms. The first one is an object-oriented approach, whereas the second is a more procedural approach.
[bookmark: _Toc252518860]Object-oriented approach to deal with GMP communication problems
The first mechanism uses an interface, called GiapiErrorHandler. This interface allows client code to implement a method that will be invoked every time the GMP communication needs to be reset. This interface has only one method that needs to be implemented, called onError. The following is the signature of the onError method in this interface.

		onError

	Signature:
	void onError(void)

	Description:
	Callback invoked when there is a problem with the GIAPI Language Glue trying to communicate with the GMP. Implementations of this class should put into this call all the activities that need to be performed in case there is a problem with the GMP, especially if the GMP needs to be restarted.

	Parameters:
	void

	Returns:
	void

The pGiapiErrorHandler is a smart pointer definition to a GiapiErrorHandler implementation.
In the GiapiUtil class, the registerGmpErrorHandler method allows to register a GiapiErrorHandler with the GIAPI. This method will be invoked whenever the GMP connection needs to be reestablished by the GIAPI. The following is the signature of this method:

		registerGmpErrorHandler

	Signature:
	static void registerGmpErrorHandler (pGiapiErrorHandler handler)
 throw (CommunicationException)

	Description:
	Register and error handler object (as a smart pointer) that will be invoked when a GMP connection problem happens and the connection is recovered.
In the event of a communication problem with the GMP, the GIAPI library will attempt to restore the connection to the GMP. Once the connection is available again, all the handlers registered through this method will be invoked. The same handler can’t be registered more than once.

	Parameters:
	handler The handler that will be invoked when the communication to the GMP is lost and later recovered.

	Returns:
	void

	Throws:
	CommunicationException in case there is an error accessing the GMP when the call is made

A normal usage pattern of this method is for a client to create an implementation of the GiapiErrorHandler, and make sure the onError() method calls all the methods that makes subscriptions with the GMP (like the subscribeApply, subscribeSequenceCommand, subscribeEpicsStatus, etc).
[bookmark: _Toc252518861]A procedural approach to deal with GMP communication problems
In case is not convenient to use a C++ interface, it is also possible to register an error handler through a function pointer. In the <giapi/giapi.h> header the following definition exists:
typedef void (*giapi_error_handler)(void);
Client code can register a simple C-style function based on that definition that will be invoked whenever a communication problem with the GMP occurs. The usage pattern is similar to the object-oriented approach. A similar method in the GiapiUtil class is provided to register these function pointers with the GIAPI:

		registerGmpErrorHandler

	Signature:
	static void registerGmpErrorHandler (giapi_error_handler handler)
 throw (CommunicationException)

	Description:
	Register and error handler (as a function pointer) that will be invoked when a GMP connection problem happens and the connection is recovered.
In the event of a communication problem with the GMP, the GIAPI library will attempt to restore the connection to the GMP. Once the connection is available again, all the handlers registered through this method will be invoked. The same handler can’t be registered more than once.

	Parameters:
	handler A function pointer that will be invoked when the communication to the GMP is lost and later recovered.

	Returns:
	void

	Throws:
	CommunicationException in case there is an error accessing the GMP when the call is made

[bookmark: _Toc252518862]Exceptions in the GIAPI C++ Language Glue
As described in the previous sections, several methods in the GIAPI C++ Language glue throw exception when an operation cannot complete. This section describes the different exceptions in use in the GIAPI.
[bookmark: _Toc252518863]Exception Classes in the GIAPI C++ Language Glue
Exceptions in the GIAPI C++ Language glue are modeled using the standard C++ std::exception class as the base class. The following diagram depicts the class hierarchy used in the GIAPI to model the exceptions.

[image:]
Figure 4: GIAPI Exception Hierarchy
The GiapiException is the base class for all the exceptions in the GIAPI and the one that the high-level methods in the library will throw. Client code could only handle this exception if no more information is needed. If more information is needed, client code can handle the specific exceptions in the exception hierarchy to figure out the exact cause of a problem.
The definitions of all the exceptions in the GIAPI C++ Language glue are in the header <giapi/giapiexcept.h>. All the exceptions are in the giapi namespace. The GiapiException base class defines mechanisms to provide a textual description of the cause of a problem. The following is a summary of these methods:

		setMessage

	Signature:
	void setMessage(const std::string & msg, ...)

	Description:
	Set the cause for this exception

	Parameters:
	msg A textual description of the cause of the exception
variable Parameters to format the message into a string

	

	setMessage

	Signature:
	void setMessage(const std::string & msg)

	Description:
	Set the cause for this exception

	Parameters:
	msg A textual description of the cause of the exception

	

	getMessage

	Signature:
	std::string getMessage() const

	Description:
	Gets the text message for this exception

	Parameters:
	None

In addition, the constructor for the exception can take a string as an argument to describe the cause of the exception.
The following table contains the description of all the other exceptions and when they are thrown.

	Exception
	Description

	CommunicationException
	These exceptions are generated when some communication problem happens between the GIAPI library and the Gemini Master Process.

	InvalidOperation
	Thrown if the requested operation is not valid in the current context.

	GMPException
	A communication exception caused by a problem trying to contact the Gemini Master Process

	PostException
	A communication exception raised when some condition prevents a post operation to complete

	TimeoutException
	A timeout expired when waiting for an operation to complete, usually involving a communication with the Gemini Master Process

Table 17: Exceptions in the GIAPI library

[bookmark: _Ref7425757][bookmark: _Toc478453722][bookmark: _Toc482440233][bookmark: _Ref522027700]ICD50:GIAPI C++ Language Glue API	GIAPIC++ICD50-02042008/11	0
ICD50:GIAPI C++ Language Glue API	GIAPIC++ICD50-02042008/11	38
image2.png

image3.png

image4.png

image5.png

image6.png

image1.png

