
NIFS Data Reduction

Richard McDermid
Gemini Data Reduction Workshop

Tucson, July 2010

IFU Zoo: How to map 3D on 2D

“Spaxel”	

NIFS	

IFU Techniques:
Image Slicer

Pros:
– Compact design
– High throughput
– Easy cryogenics

Cons:
– Difficult to

manufacture

MIRI -
JWST

Cross	
 Slice	

Al
on

g	

Sl
ic
e	

Sky	
 x	

Sk
y	

y	

Rectangular Pixels
•  NIFS has different (x,y) spatial sampling
•  Along the slice is sampled by the detector
•  Across the slice is sampled by the slicer
•  Cross-slice sets spectral PSF - should be sampled on ~2 pixels
•  Gives rectangular spaxels on the sky

Detector	

Plane	

Sky	
 Plane	

NIFS
•  Near-infrared Integral Field Spectrograph
•  Cryogenic slicer design
•  Z,J,H,K bands, R~5,000
•  One spatial setting:

– 3”x3” FoV
–  0.1”x0.04” sampling

•  Optimized for use with AO
•  Science: young stars, exo-planets, solar

system, black holes, jets, stellar
populations, hi-z galaxies….

Typical NIFS Observation
•  ‘Before’ telluric star

–  NGS-AO
–  Acquire star
–  Sequence of on/off exposures
–  Same instrument config as science (inc. e.g. field lens for LGS)

•  Science observation
–  Acquisition
–  Observation sequence:

•  Arc (grating position is not 100% repeatable)
•  Sequence of on/off exposures

•  ‘After’ telluric (if science >~1.5hr)
•  Daytime calibrations:

–  Baseline set:
•  Flat-lamps (with darks)
•  ‘Ronchi mask’ flats (with dark)
•  Darks for the arc

–  Darks for science (if sky emission to be used for wavelength
calibration)

Typical NIFS Data
Science	
 Object	
 Arc	
 Lamp	

Flat	
 Lamp	
 Ronchi	
 Mask	

Wavelength

Slice

Arranging your files - suggestion
Daycals/ - All baseline daytime calibrations

 YYYYMMDD/ - cals from different dates

Science/ - All science data

 Obj1/ - First science object

 YYYYMMDD/ - First obs date (if split over >1 nights)

 Config/ - e.g. ‘K’ (if using multiple configs)

 Telluric/ - telluric data for this science obs

 Merged/ - Merged science and subsequent analysis

Scripts/

NIFS Reduction: Example scripts
•  Three IRAF scripts on the web:

– Calibrations
– Telluric
– Science

•  Form the basis of this tutorial
•  Data set:

– Science object (star)
– Telluric correction star
– Daytime calibrations

•  Update the path and file numbers at the top
of each script

•  Excellent starting point for basic reduction

Lamp Calibrations
•  Three basic calibrations:

– Flat (DAYCAL)
•  Correct for transmission and illumination
•  Locate the spectra on the detector

– Ronchi Mask (DAYCAL)
•  Spatial distortion

– Arc (NIGHTCAL)
•  Wavelength calibration

•  Each has associated dark frames
•  May have multiple exposures to co-add
•  DAYCAL are approx. 1 per observation date
•  NIGHTCAL are usually once per science

target, but can be common between targets if
grating config not changed

Calibration 1: Flat-Field
•  Step 1: Locate the spectra

– Mask Definition File (MDF) provides relative
location of slices on detector

– Use nfprepare to match this to the absolute
position for your data:

– Offset is stored in a new image
– This exposure is then referenced in subsequent

steps that need to know where the spectra are on
the chip

nfprepare(calflat,rawpath=raw_data, outpref="s", shiftx=INDEF, !
 shifty=INDEF, fl_vardq-, fl_corr-, fl_nonl-)!

Input	
 file	
 Path	
 to	
 data	
 Prefix	
 for	
 new	
 output	
 file	
 X-­‐shiH	
 for	
 MDF	

Y-­‐shiH	
 for	
 MDF	
 Do	
 not	
 create	
 a	

variance	
 extension	

Do	
 not	
 correct	
 for	

non-­‐linearity	

Do	
 not	
 try	
 to	
 flag	

non-­‐linear	
 pixels	

Calibration 1: Flat-Field
•  Step 2.1: Update flat images with offset value
•  Step 2.2: Generate variance and data quality

extensions
•  Nfprepare is called again (once) to do both these

tasks:

•  Apply same process to dark frames

nfprepare("@flatlist”, rawpath=raw_data, shiftim="s"//calflat,!
!fl_vardq+, fl_int+, fl_corr-, fl_nonl-)!

Input	
 file	
 list	
 Reference	
 image	
 with	
 shiH	

Create	
 variance	
 and	

data	
 quality	
 planes	

Run	
 interacMvely	

Calibration 1: Flat-Field
•  Step 2.3: Combine flats and darks using gemcombine:

•  Repeat for darks…
•  Now have 2D images with DQ and VAR extensions.

Ready to go to 3D…

gemcombine("n//@flatlist",output="gn"//calflat,!
 fl_dqpr+, fl_vardq+, masktype="none", logfile="nifs.log”)!

Input	
 file	
 list	

Propagate	
 DQ	
 Generate	
 VAR/
DQ	
 planes	

No	
 pixel	
 masking	
 Append	
 outputs	

to	
 a	
 log	
 file	

Calibration 1: Flat-Field
•  Step 3.1: Extract the slices using nsreduce:

•  Step 3.2: Create slice-by-slice flat field using nsflat:

–  Divides each spectrum (row) in a slice by a fit to the
average slice spectrum, with coarse renormalizing

–  Also creates a bad pixel mask from the darks

nsreduce("gn"//calflat, fl_nscut+, fl_nsappw+, fl_vardq+,!
!fl_sky-, fl_dark-, fl_flat-, logfile="nifs.log”)!

‘cut’	
 out	
 the	
 slices	
 from	
 the	
 2D	
 image	
 Apply	
 first	
 order	
 wavelength	
 coordinate	

system	

nsflat("rgn"//calflat, darks="rgn"//flatdark,!
 flatfile="rn"//calflat//"_sflat”, darkfile="rn"//flatdark//"_dark",!
 fl_save_dark+, process="fit”, thr_flo=0.15, thr_fup=1.55,!
 fl_vardq+,logfile="nifs.log") !

LOwer	
 and	
 UPper	
 limits	
 for	
 ‘bad’	
 pixels	

Output	
 flat	
 image	

Calibration 1: Flat-Field

Calibration 1: Flat-Field

Calibration 1: Flat-Field
•  Step 3.3: Renormalize the slices to

account for slice-to-slice variations using
nsslitfunction:

– Fits a function in spatial direction to set slice
normalization

– Outputs the final flat field, with both spatial
and spectral flat information

nsslitfunction("rgn"//calflat, "rn"//calflat//"_flat",!
 flat="rn"//calflat//"_sflat”, dark="rn"//flatdark//"_dark",

!combine="median”, order=3, fl_vary-, logfile="nifs.log”)!

Final	
 flat-­‐field	
 correcMon	
 frame	

Method	
 to	
 collapse	

in	
 spectral	

direcMon	

Order	
 of	
 fit	
 across	
 slices	

Calibration 1: Flat-Field

Bin	
 for	

fiUng	
 slit	

funcMon	

Calibration 1: Flat-Field

Fit	
 to	
 illuminaMon	
 along	
 slice	

Calibration 2: Wavelength Calibration
•  Step 1: Repeat nfprepare, gemcombine and

nsreduce -> extracted slices
•  Step 2: Correctly identify the arc lines, and

determine the dispersion function for each slice
–  Should run this interactively the first time through to

ensure correct identification of lines and appropriate
fit function

–  First solution is starting point for subsequent fits
–  Should robustly determine good solution for

subsequent spectra
•  Result is a series of files in a ‘database/’ directory

containing the wavelength solutions of each slice
nswavelength("rgn"//arc, coordli=clist, nsum=10,
thresho=my_thresh, trace=yes, fwidth=2.0, match=-6, cradius=8.0,
fl_inter+, nfound=10, nlost=10, logfile="nifs.log”)!

Calibration 2: Wavelength Calibration

Calibration 2: Wavelength Calibration

Calibration 3: Spatial Distortion

•  Need to correct for distortions along the
slices, and registration between slices

•  This is done using the Ronchi mask as a
reference

•  Analogous to wavelength calibration, but
in spatial domain

NIFS: Ronchi Mask

NIFS Field
Ronchi Mask

One slice

NIFS: Ronchi Mask
Reconstructed	

image	

Transformation to make lines straight gives geometric correction

Calibration 3: Spatial Distortion

•  Step 1: Repeat nfprepare, gemcombine and
nsreduce -> extracted slices

•  Step 2: run nfsdist
–  Reference peaks are very regular, so easy to fall foul

of aliasing when run automatically
–  Recommend running interactively for each daycal set

•  TIP: apply the distortion correction to the Ronchi
frame itself, and check its OK

nfsdist("rgn"//ronchiflat, fwidth=6.0, cradius=8.0, glshift=2.8, !
minsep=6.5, thresh=2000.0, nlost=3, fl_int+, logfile="nifs.log”)!

Calibration 3: Spatial Distortion

TIP:	

• 	
 If	
 the	
 peaks	
 are	
 shiHed,	
 try	
 ‘i’	
 to	
 iniMalize,	
 then	
 ‘x’	
 to	
 fit	

• 	
 IdenMfy	
 with	
 ‘m’	
 missed	
 peaks	
 if	
 possible	

Calibration 3: Spatial Distortion
BAD….	
 GOOD!	

Calibration 3: Spatial Distortion
BAD….	
 GOOD!	

Bo]om	
 slice	

is	
 truncated	

-­‐	
 Slit	
 is	

extrapolated	

Lamp Calibrations: Summary

You now have:
1.  Shift reference file: "s"+calflat
2.  Flat field: "rn"+calflat+"_flat"
3.  Flat BPM (for DQ plane generation): "rn"+calflat

+"_flat_bpm.pl”
4.  Wavelength referenced Arc: "wrn"+arc
5.  Spatially referenced Ronchi Flat: "rn"+ronchiflat

Notes:

–  1-3 are files that you need
–  4 & 5 are files with associated files in the ‘database/’ dir
–  Arcs are likely together with science data

Telluric Star

•  Similar to science reduction up to a point:
– Sky subtraction
– Spectra extraction => 3D
– Wavelength calibration
– Flat fielding

•  Then extract 1D spectra, co-add separate
observations, and derive the telluric
correction spectrum

Telluric Star

•  Preliminaries:
– Copy the calibration files you will need into

telluric directory:
–  Shift file
–  Flat
–  Bad pixel mask (BPM)
– Ronchi mask + database dir+files
–  Arc file + database dir+files

– Make two files listing filenames with (‘object’)
and without (‘sky’) star in field

Telluric Star

•  Step 1.1: Run nfprepare, making use of
the shift file and BPM

•  Step 1.2: Combine the blank sky frames:
– Skies are close in time
– Use gemcombine and your list of sky frames

to create a median sky
•  Step 1.3: Subtract the combined sky from

each object frame with gemarith

Telluric Star
•  Step 2.1: Run nsreduce, this time

including the flat:

•  Step 2.2: Replace bad pixels with values
interpolated from fitting neighbours

– Uses the Data Quality (QD) plane

nsreduce("sn@telluriclist",outpref="r", flatim=cal_data//"rn"//
calflat//"_flat”, fl_nscut+, fl_nsappw-, fl_vardq+, fl_sky-,
fl_dark-, fl_flat+, logfile=log_file)!

nffixbad("rsn@telluriclist",outpref="b",logfile=log_file)!

Telluric Star
•  Step 3.1: Derive the 2D spectral and spatial

transformation for each slice using nsfitcoords
– This combines the ‘1D’ dispersion and distortion

solutions derived separately from nswavelength and
nsdist into a 2D surface that is linear in wavelength
and angular scales

– The parameters of the fitted surface are associated
to the object frame via files in the database directory

nsfitcoords("brsn@telluriclist", outpref="f", fl_int+,
lamptr="wrgn"//arc, sdisttr="rgn"//ronchiflat, lxorder=3,
lyorder=3, sxorder=3, syorder=3, logfile=log_file)!

Nsfitcoords - spectral

Nsfitcoords - spectral

Nsfitcoords - spatial

Nsfitcoords - spatial

Telluric Star

•  Step 3.2: Transform the slice images to the
linear physical coordinates using nstransform
– Uses transforms defined by nsfitcoords
– Generates slices that are sampled in constant

steps of wavelength and arcsec
•  This is essentially a data-cube (even though

its not a cube…)
– Can run analysis directly from this point

Telluric Star
•  Step 4.1: Extract 1D aperture spectra from the data

cube
–  Use nfextract to define an aperture (radius and centre)

and sum spectra within it
–  Outputs a 1D spectrum

•  Step 4.2: Co-add the 1D spectra using gemcombine

Science Data

•  Same preliminaries as telluric:
– Copy database and arc+Ronchi files
– Copy shift file, flat and BPM
–  Identify sky and object frames

•  In addition, we make use of the 1D telluric
•  Generally need to combine separate (and

dithered) data-cubes

Science Data

•  Initial steps:
– Nfprepare as per telluric
– Subtract sky using gemarith

•  Usually have one unique sky per object: ABAB
•  Can have ABA – two science share a sky

– Nsreduce (inc. flat field)
– Nffixbad, nsfitcoords, nstransform

•  Now have data-cube with linear physical
coordinates

Science Data: Telluric correction
•  Telluric spectrum is not only atmosphere,

but also stellar spectrum:
– Need to account for stellar absorption features
– AND account for black-body continuum

•  Needs some ‘by-hand’ steps to prepare
the telluric star spectrum
– Remove strong stellar features with splot
– Remove BB shape with a BB spectrum

Science Data: Telluric correction

BB	
 @	
 8000K	

Science Data: Telluric correction

BB	
 @	
 8000K	

Telluric Absorption
•  Alternative approach is to fit a stellar template (Vacca et

al. 2003)
•  Need good template
•  Can use solar-type stars, but needs careful treatment…

Science Data: Telluric correction
•  Finally, run nftelluric

– Computes the normalized correction spectrum
– Allows for shifts and amplitude scaling
– Divides the correction spectrum through the data

Telluric	

Science	

Science Data: Merging
•  Now have series of data-cubes:

– No dark current or sky (sky-subtracted)
– Spatially and spectrally linearized
– Bad pixels interpolated over
– No instrumental transmission (flat-fielded)
– No atmospheric transmission (telluric-corrected)

•  Need to combine the data-cubes
•  Will do this in three steps:

– Convert MEF ‘cubes’ to real 3D arrays
– Determine the relative spatial origin and adapt the

WCS headers
– Use gemcube to combine the cubes

Science Data: Merging
•  Use nfcube to create the 3D arrays

– Uses interpolation to go from series of 2D slices to
one rectilinear 3D array

– Default pixel scale is 0.05”x0.05” (arrays need
square pixels..)

•  These cubes are easily displayed using ds9
–  Load as an array, scroll through the slices

•  Find a reference pixel coordinate
– Should be easily recognizable in the cube
– Should be common to all cubes

•  Adapt the headers to reflect the common spatial
axes origin

•  Run gemcube

Science Data: Merging
•  This approach involves (at least) one

superfluous interpolation: nifcube + gemcube
both interpolate

•  Might be possible to use gemcube directly from
transformed data, but may need wrapper (TBD:
works on single slices, so can be adapted)

•  Nifcube step is convenient for determining
reference coordinate

•  At least gives a way to combine your data at
this point – stay tuned for updated
documentation

