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Observations in the mid-infrared (or equivalently the thermal infrared, so called be-
cause at these wavelengths the thermal radiation from the atmosphere and the telescope
are significant) are often done in chop/nod mode wherein one points the telescope at a
position slightly off the target and moves the telescope field of rapidly between the source
position and a sky position, usually by rocking the secondary mirror at a set frequency,
and then offsets the telescope to the other side of the position to repeat the process now
sampling the sky on the other side of the central position. This is illustrated in Figures
1 and 2 below. However please note that the angles over which chopping takes place are
small: at Gemini the maximum chop amplitude is 15 arc-seconds, which is about the same
as the separation of the Mizar A/B binary star pair in Ursa Major–a large enough sepa-
ration to be seen by those with good eyesight, but still small on the sky. In the Figures
the angles are drawn as far larger than the real angles on the sky for ease of labeling the
different positions.

This document is intended to show how this method of observing works to remove the
sky and telescope backgrounds to give just the emission from the target.

As an aside, in cases where the background contribution is changing only slowly chop-
ping is not needed and observation can be carried out in a simple nod mode. That situation
is closely analogous to what is discussed here, but is less complicated because only two
observation positions on the sky and one view of the telescope need to be considered. The
pure nod case will not be considered here. Pure nodding is often used in L-band (≈3.5
µm) and in M-band (≈5 µm) to remove the thermal background, and it is used at shorter
wavelengths including in optical spectroscopy to remove airglow or other non-thermal sky
background radiation.

To understand what is happening in chop/nod observations one has to keep straight
three separate sources of emission:
(1) a source, seen in chop position A/nod position A and chop position B/nod position B

(it may be still in the field of view of the detector in the other nod position, but that
is not of concern here);

(2) the telescope radiation, seen in both the chop A and chop B positions–chop A will
be assumed to be looking at telescope from the “right” position, and chop B will be
assumed to be looking at the telescope from the “left” position, which two views are
not exactly the same but which are fixed as the telescope is moved to point at different
positions on the sky;

(3) the sky radiation–actually from the Earth’s atmosphere–which is viewed at three dif-
ferent positions which I will denote “A”, “B”, and “C” here.

The source contribution is assumed to be constant here. In many cases when observing
in the thermal infrared the emission from the telescope and from the atmosphere is much
larger than the emission from the source. As the secondary mirror is moving only slightly
the views of the telescope from the “left” and “right” positions will be similar, but for
example any edges of objects or other positions where there is contrast in the field of view
will shift somewhat between the two chop positions.
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Figure 1 – Illustration of chop/nod observations. The upper part of the Figure shows the
telescope pointing in nod A, off to one side of the object (blue arrow) and the black lines
indicate the two pointings of the telescope while chopping at this position. The lower part
shows the telescope pointing in nod B (green arrow) now on the other side of the object,
and the associated two chop positions. As long as the nod motion is exactly the same
direction and amplitude as the chop motion then the source position on the detector in
chop A/nod A will be the same as the source position on the detector in chop B/nod B.

Note that the angles involved are considerably exaggerated; the actual chop angle is
so small that if the pairs of black lines were drawn with this angle between them one would
not be able to see the lines as separated on the diagram.
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Figure 2 – The combined chop/nod situation is shown above where the blue and green
arrows show the two telescope pointings in the nod positions while the black lines show
the positions of the telescope in the different chop pointings. The three fields of view that
result are labeled on the figure.



Assume that the telescope starts out in nod position A and an exposure is taken. The
radiation components observed are

nod A1, chop A → sky B1 + telescope R1 + source

nod A1, chop B → sky A1 + telescope L1

where the subscript 1 indicates this observation is taken at time 1, since later I will discuss
what happens when the sky or the telescope contributions are changing with time: as one
expects because the atmospheric temperature and the telescope temperature change with
time.

The images at these two positions chop positions are taken for some time interval,
and then the telescope is offset to nod position B and the observation is repeated–by
assumption, for the same length of time. In this second nod position one observes

nod B2, chop A → sky C2 + telescope R2

nod B2, chop B → sky B2 + telescope L2 + source

so the source is now in the opposite chop position than it was previously.
Assume then that another observation is done in nod position B, and then the telescope

is moved back to nod position A for a fourth observation of the same sort. From these one
gets the same results except the subscripts are different to denote the different times:

nod B3, chop A → sky C3 + telescope R3

nod B3, chop B → sky B3 + telescope L3 + source

nod A4, chop A → sky B4 + telescope R4 + source

nod A4, chop B → sky A4 + telescope L4

What is done is to form the difference images between chop A and chop B for these four
observations. Assuming the chop B observation is subtracted from the chop A observation
what is obtained is

chop A1 − chop B1 = (sky B1 − sky A1) + (telescope R1 − telescope L1) + source

chop A2 − chop B2 = (sky C2 − sky B2) + (telescope R2 − telescope L2) − source

chop A3 − chop B3 = (sky C3 − sky B3) + (telescope R3 − telescope L3) − source

chop A4 − chop B4 = (sky B4 − sky A4) + (telescope R4 − telescope L4) + source

If these observations were just added together the source contribution would (ideally) be
perfectly eliminated because the source is positive in the differences for nod position A and
negative for the differences in nod position B. One of course wants to detect the source so
what one does instead is negate the differences for nod position B, so one has

chop A1 − chop B1 = (sky B1 − sky A1) + (telescope R1 − telescope L1) + source

chop B2 − chop A2 = (sky B2 − sky C2) + (telescope L2 − telescope R2) + source

chop B3 − chop A3 = (sky B3 − sky C3) + (telescope L3 − telescope R3) + source

chop A4 − chop B4 = (sky B4 − sky A4) + (telescope R4 − telescope L4) + source



to work with. Now if one average these differences, one can see that the sky and telescope
contributions will tend to cancel out, while the source contribution is included in all four
terms and so will not cancel out. The expression for the average is

averaged difference = (sky B1 + sky B2 + sky B3 + sky B4)/4

− (sky A1 + sky C2 + sky C3 + sky A4)/4

+ (telescope R1 + telescope R4 − telescope R2 − telescope R3)/4

+ (telescope L2 + telescope L2 − telescope L1 − telescope L4)/4

+ source

which shows that the average we obtain contains the source contribution plus some con-
tribution from the mean of differences of the sky and telescope emission seen in the set of
observations.

Now consider a simple case, where the sky contributions and the telescope contribu-
tions are constant with time so for example sky A1 = sky A4, and so on, hence one can just
drop all the subscripts that indicate which time things were observed. In such a situation

averaged difference = (sky B + sky B + sky B + sky B)/4

− (sky A + sky C + sky C + sky A)/4

+ (telescope R + telescope R − telescope R − telescope R)/4

+ (telescope L + telescope L − telescope L − telescope L)/4

+ source

= sky B −

sky A + sky C

2
+ source

so the telescope contribution is completely removed. The sky contribution will also cancel
out provided that

sky B =
sky A + sky C

2
,

which is likely to be close to the real situation as long as positions A, B, and C are very
close together in the sky. Note that it is not certain that the sky emission at position B
equals the average of the sky emission at positions A and C. . .if there are strong gradients
in the sky emission it may not cancel out properly no matter what chopping and nodding is
being done. It is, however, observed that most of the time under good weather conditions
the cancellation is excellent. Any linear gradients in the sky emission are removed by this
chop/nod process. In bad weather the cancellation is observed to be poorer, and this can
lead to a residual signal in a set of ABBA nod cycles.

The summary of the time independent case is that any linear gradients across the
sky region being observed will cancel out in the chopping and nodding. Since the region
of sky being observed is usually small and the chop distance is also small taking a linear
approximation to the gradient normally works well.

When these assumptions hold one nod A observation and one nod B observation
averaged together will cancel out the telescope and sky backgrounds. Why then have the



equations been set up for a group of four nod observations? The answer is that having
four nods in a group this way makes a difference if the sky or telescope contributions are
changing with time. As long as the temperature of the atmosphere and of the telescope
are constant with time, the above situation holds and the backgrounds one gets looking at
the telescope or at the different parts of the sky are fixed. So they would cancel out nicely
in an AB nod pair. However it is known that the temperatures of objects, including the
atmospheric temperatures, are not constant, so one has to assume that all these background
contributions are changing with time. Usually these changes are slow, but they depend on
the weather and also on how the telescope temperature is changing. One nod A observation
difference averaged with the negative of one nod B observation difference gives

averaged difference = (sky B1 + sky B2)/2

− (sky A1 + sky C2)/2

+ (telescope R1 − telescope R2)/2

+ (telescope L2 − telescope L1)/2

+ source

where one notes that the sky background is sampled at position C at one time and at
position A at a different time. If we assume that at the initial time

sky B1 =
sky A1 + sky C1

2

and also that at the later time

sky B2 =
sky A2 + sky C2

2

these equations give the following for the sky contribution:

sky B1 + sky B2

2
−

sky A1 + sky C2

2
=

(sky A1 + sky C1 + sky A2 + sky C2)

4

−

(sky A1 + sky C2)

2

=
(sky A2 − sky A1)

4
+

(sky C1 − sky C2)

4
.

These terms involving the different sky A and sky C values do not have to cancel out.
They will cancel out if

sky A2 − sky A1 = sky C2 − sky C1 ,

which would be the case if the emission from all three sky positions are changing the same
way with time between the two observations. If that is the case one can use AB nodding
and the sky contributions will again cancel out.



What is more commonly seen is that the sky emission from the two adjacent fields
changes with time at slightly different rates. This is because the fractional change in
brightness is more likely to be the same for the two sky positions than is the absolute rate
of change of brightness at the two sky positions, so if the emission at position A changes
by 1% over some given time the emission at position C will change by 1% as well. In this
circumstance, if sky A1 is not the same as sky C1 then the changes in brightness will be
different and the sky contributions will not cancel out.

This is where nodding in ABBA fashion gives one an advantage. Consider the average
of four nods in ABBA pattern given above,

averaged difference = (sky B1 + sky B2 + sky B3 + sky B4)/4

− (sky A1 + sky C2 + sky C3 + sky A4)/4

+ (telescope R1 + telescope R4 − telescope R2 − telescope R3)/4

+ (telescope L2 + telescope L3 − telescope L1 − telescope L4)/4

+ source .

When the sky emission is changing with time can one still get cancellation of the back-
ground? One needs to have linear gradients across the sky at any time for cancellation
in the simplest case. One can hope that these linear gradients will be preserved even if
the value of the gradient changes with time. This requires that the changes in emission at
any point are linear with time. Again this is not going to strictly be the case but when
the changes are gradual it should be a good approximation. If one makes this assumption
then for, say, sky position A we have that

sky A2 = sky A1 + a∆t2→1

where a is some rate of change and ∆t2→1 = t2 − t1. Assuming that the nods are equally
spaced in time one would have

sky A2 = sky A1 + a∆t sky A3 = sky A1 + 2a∆t sky A3 = sky A1 + 3a∆t

and similar relations apply for the other quantities in the various equations, which is what
will be assumed hereafter.

So consider the case where there are these linear time dependencies. If it is assumed
that the sky background is linear over the three sky positions observed at each time so
that

sky B1 =
sky A1 + sky C1

2

sky B2 =
sky A2 + sky C2

2

sky B3 =
sky A3 + sky C3

2

sky B4 =
sky A4 + sky C4

2
,



that the sky emission values are changing linearly with time so that

sky A2 = sky A1 + a∆t2→1

sky B2 = sky B1 + b∆t2→1

sky C2 = sky C1 + c∆t2→1

b = (a + c)/2 to satisfy the equations above

telescope R2 = telescope R1 + r∆t2→1

telescope L2 = telescope L1 + l∆t2→1 ,

and finally that the four observations are evenly spaced in time then the expression for the
average becomes

averaged difference = b(∆t + 2∆t + 3∆t)/4

− a(3∆t)/4 − c(∆t + 2∆t)/4

+ r(3∆t − 2∆t − ∆t)/4

+ l(∆t + 2∆t − 3∆t)/4

+ source

(where ∆t is the time between any two nod observations, as in the previous paragraph) or

averaged difference = 6∆t(b− (a + c)/2) + source

so if as assumed b = (a + c)/2 the sky emission term cancels out.
Compare this to the case where one nods in an ABAB pattern instead. In that case

the averaged difference expression above becomes

averaged difference = b(∆t + 2∆t + 3∆t)/4

− a(2∆t)/4 − c(∆t + 3∆t)/4

+ r(2∆t − 3∆t − ∆t)/4

+ l(∆t + 3∆t − 2∆t)/4

+ source

(one just swaps all 3’s and 2’s in the equation above since now the second nod A and the
second nod B are exchanged), which reduces to

averaged difference = (6b∆t − 2a∆t − 4c∆t)/4

+ (l − r)∆t/2

+ source .

Using the equation 2b = a + c in the expression one gets the final result

averaged difference = (a − c)∆t/4

+ (l − r)∆t/2

+ source



in which the atmospheric and telescope contributions do not cancel out as well as they
did in the ABBA nod pattern case. The reason for this is that one is always looking at
one of the off source positions before the other, and similarly the right telescope position
is always being looked at before the left telescope position. Using an ABBA nod pattern
causes this to alternate: in one pair sky position A is looked at before sky position C,
and in the next pair sky position C is looked at before sky position A, hence linear time
gradients in these contributions cancel out. For this reason using an ABBA nod pattern
should produce better results than an ABAB nod pattern.

In actual practise there are complications in all of these things. The telescope back-
ground tends to be slowly varying and thus either ABBA or ABAB nod patterns will
remove that component quite well in most cases. Gradients in the sky emission tend to
be associated with clouds so in clear conditions ABAB nodding will probably work well
enough. Nevertheless an ABBA nod pattern is to be preferred to an ABAB nod pattern.


