Measurements of airglow on Maunakea at Gemini Observatory

Kathy Roth, Adam Smith, Andrew Stephens, Olesja Smirnova

Airglow captured over the Atacama Desert (December 2015)

Gemini cloud camera (North)

Gemini cloud camera (North)

Gemini cloud camera (South)

Gemini cloud camera (South)

GMOS-S Hamamatsu CCD Commissioning

 PR imaging of science field previously imaged in excellent seeing in i,z-band with the original EEV detectors.

Expected Quantum Efficiency for the new GMOS-S CCDs

Wavelength (nm)

GMOS-S Hamamatsu CCD Commissioning

- Measured background with EEV ~ 4200e⁻
- Measured background with Hamamatsu ~ 38000e⁻
 no gain in sensitivity
- EEV image taken at 2am with no moon, Hamamatsu image taken just after evening twilight in full moon.
 - Does the moon impact i-band imaging? Not at that
 - level
 - Did proximity to Twilight impact the background? No, subsequent images had same levels
 - Must be airglow

Measuring sky background with QAP (Quality assurance pipeline)

- QAP uses instrument/filter zero-points to calculate the measured sky background in imaging data
- QAP not intended to produce scientific quality images or measurements
 - Use QAP automatic sky background values measured in 13 years of GMOS and NIRI imaging data to verify
 - How well are we doing are we delivering data with the expected sensitivity?
 - What could we do better anyway to improve the scheduling?

Preliminary Investigation

- Currently have run QAP on Gemini North imaging data back through mid 2010
- Correct QAP background values for changes in instrument/filter zero-points
- Empirically determine airmass correction to QAP background measurements
- Look for trends in background values with various parameters (moon phase, time of night, solar cycle, time of year, etc)
- A purely empirical approach

Performance Monitoring: Instrument zero points

- Photometric standards are taken whenever imaging data are taken on photometric nights for both NIRI and GMOS.
- Dedicated "performance monitoring" data are taken in all filters / modes ideally at least once per month
- Zero points are automatically derived from scripts running in background and results are posted on the web
- Recent investigations into GMOS zero points have reduced errors and reveal trends with zero point related to various mirror reflectivities

Airmass Dependence

- Linear fits to QAP background brightness values as a function of airmass.
- In the optical only data with sun and moon below -18 deg elevation considered
- In the infrared no moon restriction is considered, only sun below -18 deg

Time Of Night

- Corrected sky brightness values plotted against percent of night, where evening 12-deg twilight is 0% and morning 12-deg twilight is 100% of night completed.
- Hawaii nights are 8.9 hours long in the summer and 11.4 hours long in the winter
- Some expected results: optical bands see the moon and Twilight
- Unexpected result: all bands except g and K take 20-30% of the night to reach darkest values

Target – Moon distance

- Sky brightness plotted as a function of distance from the moon, sun below -18 and moon above horizon
- Only optical data show a dependence on the moon phase and distance from the moon.
- Strongest correlation in g-band
- z,Y show no correlation unless very close to the bright moon
- J, H, K do not see the moon

Gemini Sky Background Observing Condition

- Sky background combination of Sun and moon position, moon phase, zodiacal light based on visible observations and scattering models
- Gemini PIs use ITC to derive expected sensitivity of their imaging data for a given sky background (20,50,80,Any) between Nautical Twilights
- Gemini queue coordinators use QPT to schedule observations in conditions that do not violate the observing conditions awarded
- In the infrared, OPT and ITC do not attempt to model the sky background

Other Fun Stuff

- Explore seasonal signature
- Looking for correlations with sun spots
- K-band thermal component correlation with ambient temperature
 - Zodiacal Light

Date

Preliminary Conclusions

- r, i, z, J, H and maybe Y band sky background values decrease during the first several hours of the night before reaching their darkest values
- There may be a seasonal dependence on this decay especially in the optical – under investigation
- The observing constraints and ITC underestimate the background level in J and K

Possible scheduling Improvements

- Revise Observatory Constraints and ITC values to match sky background values actually measured.
- Avoid scheduling imaging in the first 2-3 hours of the night for science requiring the darkest background
- More advanced / challenging improvements
 - Revise QPT scheduling software to match optical sky background values actually measured
 - Implement sky background constraints in the infrared, cannot easily be predicted but would require on-sky measurements (similar to water vapor scheduling

constraint)