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This document present a short study of the null modes for the Gemini MCAO system. First, I briey
describe the problem, then I derive the expression of the combined e�ect of the quadratic modes from an
arbitrary number of layers on the plate scale of the science image, in function of the Cn2 and the wind
pro�les and the NGS characteristics. Last, I present some performance evaluations for typical guide star
con�gurations and magnitudes.

1 Introduction and Notations

1.1 The problem

It was demonstrated earlier by B.Ellerbroek and later in this paper that in a MCAO system, because
wavefront sensing on LGS is insensitive to each beam's overall Tip-Tilt component, not only tip-tilt can not
be sensed but also the altitude of the quadratic modes (defocus and astigmatisms) can not be determined. A
mismatch of the altitude at which these quadratic modes are compensated will result in a plate scale error in
the science image, and in turn in a Strehl ratio reduction in long exposure images. These quadratic modes,
badly determined by the LGS high order sensors, are called in this study the \null modes" of the LGS high
order loop, as they belong to its null space. To solve that problem, one has therefore to rely on multiple
Tip-tilt guide star. Becasue there are 5 null modes (tip, tilt, focus and 2 astigmatisms), a minimum of 3
guide stars are necessary (2 measurements per GS).

1.2 De�nitions

In the following, I will assume that the turbulence is made of discrete layers, although the results of this
analysis could easily be extended to a continuous pro�le.

I use the regular Noll de�nition for Zernike 2 to 6:

Z2 = 2x

Z3 = 2y

Z4 = 2
p
3 (x2 + y2)�

p
3

Z5 = 2
p
6 xy

Z6 =
p
6 (x2 � y2)

an(h) is the coeÆcient of Zn at altitude h layer. 'h is the phase at layer of altitude h.



MCAO Null Modes Compensation / RTP-AO-G0097 2

2 Expression of the Tip and Tilt error versus the �eld angle

The expansion of the phase on Zernike 2 to 6 in the telescope pupil, integrated along a direction (�x, �y) at
time t is:

'2:::6(x; y; �x; �y; t) =
X
h

'2:::6 h(x+ �xh=R; y+ �yh=R; t) =
X
h

X
i=2:::6

ai(h)Zi(x+ �xh=R; y+ �yh=R; t) (1)

I have dropped the index 2:::6 in the following for shortness. The Zernike expansion of 'h can be developped:

'h(x+
�xh

R
; y +

�yh

R
) = a2(h):2(x + �xh=R) + a3(h):2(y + �yh=R) +

a4(h):2
p
3 [(x+ �xh=R)

2 + (y + �yh=R)
2 � 1=2] +

a5(h):
p
6 [2(x+ �xh=R)(y + �yh=R)] +

a6(h):
p
6 [(x+ �xh=R)

2 � (y + �yh=R)
2] (2)

= 2x(a2(h) + 2
p
3 �xa4(h)h=R+

p
6 �ya5(h)h=R+

p
6 �xa6(h)h=R) +

2y(a3(h) + 2
p
3 �ya4(h)h=R+

p
6 �xa5(h)h=R�

p
6 �ya6(h)h=R) (3)

Where all the constant phase terms (piston) have been ommitted, together with the �eld independant focus
and astigmatisms terms, which in a MCAO system are compensated by the high order loop, using LGS
information. In Eq 3, the coeÆcients a2 and a3 refer to a global, �eld independant Tip-Tilt. The other
terms depends upon �x and �y and are plate scale variation terms induced by non-zero altitude quadratic
modes. Using the short notation

A2;3 =
X
h

a2;3(h) and A4;5;6 =
X
h

a4;5;6(h):h (4)

we have

'2;3(x; y; �x; �y; t) = 2x(A2(t) + 2
p
3 �x=RA4(t) +

p
6 �y=RA5(t) +

p
6 �x=RA6(t)) +

2y(A3(t) + 2
p
3 �y=RA4(t) +

p
6 �x=RA5(t)�

p
6 �y=RA6(t)) (5)

Let us now consider a MCAO system with one mirror conjugated at an altitude hm, capable of producing
tip, tilt, focus and astigmatisms. 'M is the phase and �n is the coeÆcient of Zernike Zn produced by this
mirror. Excluding again the �eld independant focus and astigmatisms modes, the compensated phase over
the null modes can be written:

'c 2;3(x; y; �x; �y; t) = '(x; y; �x; �y; t)� 'M (x; y; �x; �y; t) (6)

= 2x(A2(t) + 2
p
3 �x=RA4(t) +

p
6 �y=RA5(t) +

p
6 �x=RA6(t)) +

2y(A3(t) + 2
p
3 �y=RA4(t) +

p
6 �x=RA5(t)�

p
6 �y=RA6(t))

�2x(�2(t) + 2
p
3 �x=R�4(t)hm +

p
6 �y=R�5(t)hm +

p
6 �x=R�6(t)hm)

�2y(�3(t) + 2
p
3 �y=R�4(t)hm +

p
6 �x=R�5(t)hm �

p
6 �y=R�6(t)hm) (7)

From this equation, it is easy to see that a single mirror, located at a non zero altitude, is able to compensate

for the plate scale variations induced by the atmosphere quadratic modes. Note that a pupil-conjugated mirror
is needed to compensate for the induced focus and astigmatisms modes in the integrated phase.
The obvious and unique solution to 'c = 0 is, in presence of noise n�

�2;3 = Â2;3 =
P

h a2;3(h) + n2;3
�4;5;6 = (1=hm)Â4;5;6 = (1=hm) [

P
h a4;5;6(h)h+ n4;5;6]

(8)
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Here I have neglected any spatial aliasing contribution, which are deemed to be small as the high order terms
are corrected by the MCAO loop using the LGSs. Introducing the close loop transfer functions (TFs), Hn

(Noise TF) and H� (error TF), a more general solution can be written for the Fourier transform of � (~�)�
~�2;3 = Hbf

~A2;3 +Hn~n2;3
~�4;5;6 = (1=hm)(Hbf

~A4;5;6 +Hn~n4;5;6)
(9)

Let us now express the error on 'c in function of the close loop characteristics and the noise. Noting � the
Tip component of the compensated phase for an given point in the �eld of view, we have

�(�x; �y; t) =
1

S

Z
P

'c(x; y; �x; �y; t): Z2 dx dy (10)

= A2(t) + 2
p
3 �x=RA4(t) +

p
6 �y=RA5(t) +

p
6 �x=RA6(t)�

�2(t)� 2
p
3 �x=R�4(t)hm �

p
6 �y=R�5(t)hm �

p
6 �x=R�6(t)hm (11)

and the variance over time

< �2(�x; �y) >t =

Z
(A2(t)� �2(t))

2 + 12 (�x=R)
2(A4(t)� �4(t)hm)

2 + 6 (�x=R)
2(A6(t)� �6(t)hm)

2

+6 (�y=R)
2(A5(t)� �5(t)hm)

2 + 4
p
3 �xhm=R�2(t)�4(t) + 2

p
6 �yhm=R�2(t)�5(t)

+2
p
6 �xhm=R�2(t)�6(t) + 4

p
3
p
6 �x�yh

2
m=R

2�4(t)�5(t)

+4
p
3
p
6 �2xh

2
m=R

2�4(t)�6(t) + 12 �x�yh
2
m=R

2�5(t)�6(t) (12)

where I used the zero correlation of the �rst and second degree Zernike terms in the atmosphere (< aiai >= 0,
for i = 2:::6; j = 2:::6; i 6= j). The �, however,can be correlated through the command if noise is present.
Using the Parseval theorem,

< �2(�x; �y) >t=

Z
�2(�x; �y; t) dt =

Z
~�2(�x; �y; f) df (13)

Z
~�2(�x; �y; f) df =

Z
df ( ~A2(f)� ~�2(f))

2 + 12 (�x=R)
2( ~A4(f)� ~�4(f)hm)

2::: (14)

Remembering the close-loop relation, e.g. ~� = ~̂a = Hbf ~a or ~a� ~� = H� ~a, one gets

( ~A2(f)� ~�2(f))
2 = ( ~A2 � ( ~A2:Hbf + ~n2:Hn))

2

= ~A2
2H

2
�(g2) + ~n22H

2
n(g2) (15)

or

( ~A4(f)� ~�4(f):hm)
2 = ( ~A4 � hm(

1

hm
~A4:Hbf + ~n4:Hn))

2

= ~A2
4H

2
� (g4) + h2m~n

2
4H

2
n(g4) (16)

which leads to the �nal expression of < �2 > :

< �2(�x; �y) >t =

Z
df ~A2

2H
2
� (g2) + 12 (�x=R)

2 ~A2
4H

2
� (g4) + 6 (�y=R)

2 ~A2
5H

2
�(g5) + 6 (�x=R)

2 ~A2
6H

2
�(g6)

+~n22H
2
n(g2) + 12 �2xh

2
m=R

2~n24H
2
n(g4) + 6 �2yh

2
m=R

2~n25H
2
n(g5) + 6 �2xh

2
m=R

2~n26H
2
n(g6)

+4
p
3 �xhm=R~n2~n4Hn(g2)Hn(g4) + 2

p
6 �yhm=R~n2~n5Hn(g2)Hn(g5)

+2
p
6 �xhm=R~n2~n6Hn(g2)Hn(g6) + 4

p
3
p
6 �x�yh

2
m=R

2~n4~n5Hn(g4)Hn(g5)

+4
p
3
p
6 �2xh

2
m=R

2~n4~n6Hn(g4)Hn(g6) + 12 �x�yh
2
m=R

2~n5~n6Hn(g5)Hn(g6) (17)
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In this equation, the terms in ~A2
i :H

2
� represents the servo lag error, i.e. the high frequency part of the

mode power spectral density that is not or not perfectly compensated due to time lag. The second part,
or the terms in ~n2i :H

2
n, represents the e�ect of noise on the compensation of each of the modes. n2i is the

noise on mode i propagated from the measurement to the compensated phase through the reconstructor. Hn

represents the �ltering by the close-loop.

Similarly, for the Tilt error � :

< �2(�x; �y) >t =

Z
df ~A2

3H
2
�(g3) + 12 (�y=R)

2 ~A2
4H

2
� (g4) + 6 (�x=R)

2 ~A2
5H

2
�(g5) + 6 (�y=R)

2 ~A2
6H

2
� (g6)

+~n23H
2
n(g3) + 12 �2yh

2
m=R

2~n24H
2
n(g4) + 6 �2xh

2
m=R

2~n25H
2
n(g5) + 6 �2yh

2
m=R

2~n26H
2
n(g6)

+4
p
3 �yhm=R~n2~n4Hn(g2)Hn(g4) + 2

p
6 �xhm=R~n2~n5Hn(g2)Hn(g5)

�2
p
6 �yhm=R~n2~n6Hn(g2)Hn(g6) + 4

p
3
p
6 �x�yh

2
m=R

2~n4~n5Hn(g4)Hn(g5)

�4
p
3
p
6 �2yh

2
m=R

2~n4~n6Hn(g4)Hn(g6)� 12 �x�yh
2
m=R

2~n5~n6Hn(g5)Hn(g6) (18)

3 Performance estimation

I present here the results of performance evaluations and system optimizations derived from the above
formulation.

The input quantities are :

� The Cn2 and the wind pro�les. The Cn2 pro�le is the median pro�le for Cerro Pachon, as derived from
several site survey campains by Vernin et al (see e.g. http://www.gemini.edu/documentation/webdocs-
/rpt/rpt-ao-g0094-1.ps). A LSQ �t to the pro�le leads to a 7 layers model (communicated by M.Chun)
with the following weigths and altitudes:

Cn2 [normalized] =[0.646,0.080,0.119,0.035,0.025,0.080,0.015]
Altitudes [m] =[ 0., 1800, 3300, 5800, 7400,13100,15800]

The overall r0 at 500nm is 0.166 m.
The wind pro�le has been chosen as follow:

Wind [m/s] = [ 5., 7.5, 12., 25., 34., 21., 8.]

� The null mode temporal Power Spectral Densities (PSDs): For this, I have used Eq 4 and the expression
of the Z2...Z6 given by F.Roddier et al (JOSA A, Vol 10, pp 957{965, 1993). The PSD of the 5 null
modes are shown Fig 1. They are plotted as PSD � frequency versus frequency, for the same reasons
as explained in the above mentionned paper (basically, the value of PSD�f represents the amount of
power per unit frequency bin at any given frequency f). The "knee" of the M4...M6 modes at 2-4 Hz
is due to the highest layers, which have relatively high velocities and are weighted heavily by their
altitude (see Eq 4). The large amplitude of these modes is due to the h2 weighting term, but is greatly
reduced by �2 when computing �2 or �2 as per Eq 17 or 18.

� The system close loop transfer functions (TFs): I have used a very basic model for these TFs. It
emulates a simple integrator with gain. Examples of H� and Hn are given in Fig 2 for gain values of
0.1, 0.3 and 0.7.

� The overall noise per mode, i.e. the measurement noise propagated through the reconstructor on each
mode. For this I have used a numerical model of the system, which uses average gradient sensors. An
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Figure 1: Spectra of the Null mode coeÆcients A2 through A6
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Figure 2: Example of Transfer functions. Delay = 0.1 ms, sampling time = 1ms

interaction matrix D is derived that links image position measurements in milliarcsec to the null mode
value in radian (the null modes are normalized so that the variance of the upper mirror is one rd over
the telescope pupil area). The noise per mode is then computed using the known relation:

jn > = D�1jm > (19)

jn >< nj = D�1jm >< mjD�1T = D�1D�1
T

(20)

in its more general form (jn >< nj is the covariance matrix of the noise on the mode coeÆcients if
jm >< mj is the covariance matrix of the noise on the measurements), or

jn >< nj = D�1D�1
T

�2m ! < n2i >= �2m
X
j

D�1ji :D
�1T

ij (21)

if the noise on all guide star is equal.
The noise on each NGS measurement (X and Y) was expressed as follow (expression provided by BLE):

�m[mas] = 0:587
(�=r0)

SNR
=4:848e� 9 (22)

where SNR is the photometric SNR given by :

SNR = NPDE=
p
NPDE + 4 NSKY (23)

with �
NPDE = 100:4(20�m?) � 5200=fsampling

NSKY = 1300=fsampling
(24)

which assumes msky = 20arcsec�2, and a 1 arcsec �eld stop for the sky reduction. A value of 0.5 has
been adopted for the overall optical transmission from the Telescope M1 to the TT sensors, and a
QE of 0.6 for the TT sensor detectors (APDs), over a bandwidth of 350 nm. The detector read-out
noise (ron) was taken equal to zero (avalanche photodiodes) in these calculations, but it would be
straightforward to extend the case to non zero ron detectors by including the appropriate term in
Eq 23.
For instance, for a system with 4 NGS at (�30;�30) arcsec from the center, and a DM conjugated

at 8000 m, the matrix D�1:D�1
T

is diagonal with diagonal elements equal to 0.0038 rd2/mas for M2,
M3, 0.0018 rd2/mas for M4 and 0.0038 rd2/mas for M5 and M6.
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Figure 3: Example of the optimization process for the Tip error. The mode
residuals are computed versus the gain of the close-loop, as per Eq. The noise,
propagated on the phase through the system control matrix and the close-loop
transfer function, is computed for the same gain. The grey curve is the total error
versus gain, i.e. the quadratic sum of the residual turbulence and the noise. In
this case, four guide stars of magnitude 19 are used at (�30;�30) arcsec o�-axis.



MCAO Null Modes Compensation / RTP-AO-G0097 8

Figure 4: Same as �gure 3 for the Tilt component
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Figure 5: Strehl ratio loss due to the null modes versus �eld position for various guide star con�g-
uration and magnitudes, as plotted on the �gures (triangle).
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Figure 6: Same case as �gure 3: Tip and Tilt error in milliarcsec versus �eld position

Once all these quantities are known, the tip and tilt compensated quadratic error, �2 and �2 can be
evaluated. In Figure 3, the contribution of each null mode to �2 (�gure 4 for �2) was computed versus the
gain of the mode for a given point inthe �eld (+30",+30"). The servo lag error and the noise terms (cf Eq
17) are computed separately. Fig 3 shows that, quite expectedly, the servo lag error (negative slope curve)
on any given mode decreases as the loop gain increases (i.e. as the bandwidth goes up), while more noise
gets propagated through the loop onto the compensated phase (positive slope curve). The optimal close-loop
gain for any mode corresponds to the minimum of the sum of the servo lag error and noise terms, as shown
on the �gures. Because in the general case, the noise on the null mode may be correlated, and therefore
the total error is not the straightforward addition of these four terms (cross terms in Eq 17), we have also
computed the total tip and tilt error versus the loop gain. This is shown on top of �gure 3 and 4 respectively,
and assumes in this case an equal gain for all modes. For �gure 3 and 4, computed for a four m=19 guide
star system, and where the error is evaluated at (30,30) arcsec o�-axis, the total tip error is 16.4 mas and
the total tilt error is 15.0 mas. The error on axis is given by the tip and tilt modes only (�x = �y = 0 in
Eq 17 and 18).

Eventually, the residual tip and tilt components were evaluated over 9 points in the one arcmin square
�eld, and the optimal mode gains were chosen as the one that minimizes the average error over the evaluation
points. When this is done, the errors can be computed versus the �eld position.

From the tip and tilt errors, one can also compute the Strehl ratio loss, which here is evaluated as:

S =

s
1

1 + 2 �2x
�
s

1

1 + 2 �2y
(25)

where �2x and �2y are the tip and tilt phase variance, respectively. The Strehl loss at K band versus �eld is
shown Figure 5, upper left, for the same case as �gure 3 and 4.

Figure 6 presents the Tip (image motion along X) and Tilt error (along Y) errors versus the �eld position
in milliarcsec. The asymmetry of each component is a signature of the fact that the compensated image
motion is predominantly radial (both the turbulence residual and the noise).

Finally, Figure 6 presents also the K band Strehl loss for a sample of guide star con�guration and magnitude.

This performance evaluation still lacks some aspects:



MCAO Null Modes Compensation / RTP-AO-G0097 11

� The telescope shaking has not been included in the power spectra of the tip and tilt. Because the
PSD of telescope shaking extend quite a way toward high frequencies, it may lower the performance.
However, for telescope shaking, it is possible to make use of the peripherial WFS (P1 or P2). In that
case, one may by compensating several minute o�-axis indeed correct for the shaking but re-inject on
axis the atmospheric tip-tilt at the sensing position. Because the 50% correlation angle of tip-tilt is of
the order of several arcminutes, it should not signi�cantly increase the amplitude of the atmospheric
tip-tilt on axis.

� The use of smarter loop algorithms, such as for instance predictor, has to be investigated. It was
shown earlier (e.g. Dessenne 1998) that predictors drastically improves performance in case of highly
temporally structured perturbations, which the null modes are. This will be especially true when
telescope shaking will be considered.


