Astrodata Package Programmer’s
Manual
Release 1.0beta

Craig Allen

April 09, 2014

3

CONTENTS

1 Introduction 1
1.1 Document Brief e e e 1
1.1.1 Revision History e e 1

1.1.2 Abbreviations Table e 1

1.1.3 Intended Audience e e 1

1.1.4 Document StruCtUre v v v v it e et e e e e e e e e e e e e e e 1
Concepts 3
2.1 Backgroundo L e e e e e e 3
2.1.1 Dataset AbStraction o e e e e e e 3

2.1.2 Meta-Datao e e e e e 3

2.2 AstroDatallexicon L e e 4
2.2.1 The Astrodata Lexicon and Configurations v v v v v v v v v o u 4

2.3 Astrodata TYPe o v i e e e e e e e e e e e e e 5
2.4 Astrodata Descriptors e e e e e e e e 5
2.5 RecipeSystem e 6
2.5.1 Recipes and Primitives oL e 6

Zero Recipe System Overhead for AstroData-only Users 7

2.6 Recipe System Primitives o e e e e e e e e e e e e e 7
2.6.1 Primitives e e e e 7

2.6.2 Some Benefits of the Primitive Concept 8
Natural Emergence of Reusable Primitives 9

Test Case at Gemini Observatory: Refactoring Python Scripts into Recipes and Primitives 9

2.6.3 RecipescallingRecipes e e e 10
AstroData Class Reference 11
3.1 AstroDataClass e e e 11
32 BasicFunctions e e e 12
3.2.1 AstroData Constructor it e e e e e e e e e e e 12

322 append(.) ... oL e e e e 13

3.23 0 ClOSE(-) v v v e 13

324 AnSert(L.) . . .o . e e e e e e e e e e e e e 13

325 0nfo(l) . oo e e e 14

3.2.6 Infostr(L.) e e e e e e e e 14

327 Write(l) .. e e e e e e e e e e e e 14

3.3 Typelnformation 15
3.4 Header Manipulations L e e e 16
34.1 Set/GetPHUHeaders e 16

342 Set/Get Single-HDU Headers i ittt i e 17

343 Set/Get Multiple-HDU Headers it i e 18

3.5 Tterationand Subdata e 18
351 OVEIVIEW . . . o ot e e e e e 18

Using Slices and “Subdata™ L o 18

3.52 0 CoUNt_eXES() & v v v e 19

353 The[JOperator o o v v i e e e e e 19

3.6 Single HDU AstroData Attributes o v v v i e e e e e e e e e e e 20
3.6.1 dataattributeo e e e e 20

3.6.2 headerattribute e e e e e e e e 21

3.6.3 Renaming an Extensiono e e e 22

3.7 Module Level Functions e 22
3.7.1 correlate(l.) e e e e e e e e e e e e e 22

37.2 0 prep_output(c.) o . v v e 22

373 re_header_Keys(..)o e e e e e e e e e 23
ReductionContext Class Reference 25
4.1 Parameter and Dictionary Features e e 25
4.1.1 The “in” operator: contains(..) v vttt e e e e e e e e e e e 25

4.2 Dataset Streams: Input and Output Datasets 25
421 et inputS(..) e e e e e 25

422 get_inputs_as_astrodata(..) e e e e e e e e e e e e e e e 26

423 get_inputs_as_filenames(..) oL e e e e e e 26

424 et Sream(i.) i i e 26

4.2.5 get_reference_image(..) . . .« .« v v i i i i e e e e e e e e e e e e 26

4.2.6 report_output(..) oo e i e e e e e e e e e e e e 26

427 switch_stream(..) L e e e e e e e e e e e e e e 27

4.3 CalibrationS e e e e e e e e e 27
431 get_cal(s) . v v e e e e e e 27

432 rq_call) ..o e e e e e 27

4.4 Stacking e 28
441 rqostack_get(c.) ... e 28

442 rg_stack_update(..) e e e e e e e e e e e e e e 28

45 LIStS . o e e e e 28
45.1 list_append(..) oo e e e e e 28

452 get list(e) . . o . e e 29

4.6 ULty o o e e e 29
4.6.1 prepend_Names(..) et e 29

4.6.2 TUN(L) vt e 29
AstroData Configuration Package Development Guide 31
5.1 Elements L e e e e e e 31
5.1.1 The General Configuration Creation Process 31

5.1.2 Configuration Elements Which Have To Be Developed 31

5.2 Creating A Configuration Package L oo 32
52,1 Preparationo e e e e e e e e 32

5.2.2 Clone the Sample Package i 32

5.3 Creating An AstroDataType o 0 e e e e e e 33
5310 OVerview e e e e e e e 33

5.3.2 The Class Definition Lineby Line 33

5.3.3 The Requirement Classes oo v it ittt e e e 34
Concrete Requirements oL e e e e e 34
ISCLASS(other_class_name) v v i v i i ittt e e e 35
PHU(keyname=re_val, [keyname2=re_val2 [.]]) 35

Logical Requirement Classes i e 36

54

55

Index

AND(<requirement>,<requirement> [, <requirement> [, <requirement>]..]) 36

NOT(<requirement>) v v v v e e e e e e e e e e e e e e e e e 36
OR(<requirement>,<requirement> [, <requirement> [, <requirement>]..]) 37

Creating a New Descriptor e 37
5.4.1 TheCalculator Class i i i i e e e e e e e 37
54.2 The Calculator Index e 38
543 The DescriptorLiSt.py o v v v i e e e e e e e e e e e e e 38
The DescriptorList.py File e 38
Adding the Descriptor Function to the CalculatorClass 38
Creating Recipes and Primitive L oo 39
5.5.1 Understanding Primitives o o e 39
Primitive Indices e e 39

552 RECIPES . v v v o o e e e e e e e e e e e e e e e 40
43

CHAPTER
ONE

INTRODUCTION

1.1 Document Brief

1.1.1 Revision History

¢ v1.0 - Document ready for internal review

1.1.2 Abbreviations Table

HDU: Header-Data Unit
e MEF: Multi-Extension FITS
* PHU: Primary Header Unit

e URL: Uniform Resource Locator

1.1.3 Intended Audience

This document is intended for both new and experienced developers using ast rodata:
1. Users of the ast rodata package, in conjunction with the ast rodata_Gemini configuration package.

2. Developers creating new configuration packages (types, descriptors, and transformations), e.g. instrument de-
velopers.

3. Potential developers needing to understand the work involved prior to development (e.g. for costing).

4. Those trying to understand both what the system currently does, it’s design philosophy, and where the package
can or is expected to evolve.

1.1.4 Document Structure

This document is meant as an introductory programmer reference for Gemini Observatory’s Python-based data pro-
cessing package, astrodata. It is intended to serve both as an introductory reference for the actual function in-
terfaces of two primary classes in the astrodata package, as well as a tool for new users to understand the general
characteristics of the package. To this end this document contains three related but somewhat distinct sections:

* Two chapters presenting the API reference manuals for the AstroData and ReductionContext classes, respec-
tively.

* A chapter on Creating an AstroData configuration Package, written as a hands-on startup guide.

Astrodata Package Programmer’s Manual, Release 1.0beta

* A chapter on the Concepts in the AstroData Infrastructure.

The AstroData class is a dataset abstraction for MEF files, while the ReductionContext is the interface for
transformation primitives to communicate with the reduction system (eg. access files in the pipeline, parameter infor-
mation, execution context, and so on including all communication with the system.)

The astrodata package includes only the infrastructure code, but is generally shipped with the
astrodata_Gemini configuration package which contains all information and code regarding Gemini data types
and type-specific transformations, and with the astrodata_FITS configuration package that contains standard
FITS definitions.

The term “astrodata” in this document can refer to three somewhat distinct aspects of the system. There is AstroData
the class, which is distinguishable in print by the camel caps capitalization and is the core software element of the
system. There is astrodata the importable python package, which from the user’s point of view imports the
configurations which are available in the environment, but which strictly speaking contains only the infrustructural
code. And there is simply “Astrodata” a loose term for the whole package, including the configuration package and
support library.

2 Chapter 1. Introduction

CHAPTER
TWO

CONCEPTS

2.1 Background

2.1.1 Dataset Abstraction

Gemini MEFs, and MEFs in general, are usually meant to be coherent collections of data; the separate pixel arrays,
or extensions, are collocated in a common MEF for that reason. The MEF abstraction itself does not recognize these
connections, however, and views the MEF as a list of separate header-data units, their only relation being collocation
in the list. Even the Primary Header Unit, PHU, which has certain artifacts as a special header, generally not having
pixel data, and which is used as a file-wide header, is merely presented as the header-data unit at index 0. AstroData
relies on one pair of relational meta-data available in MEF which is indexing of the list of datasets with (EXTNAME,
EXTVER) tuple. EXTNAME operates as an extension-type specifier, and EXTVER serves to associate the extention
with other extensions (e.g. by convention (“VAR”,2) is the variance plane for (“SCI”, 2).

FITS libraries (e.g. pyfits) return opened MEFs as objects which act as lists of Header-Data Units, or extensions.
AstroData on the other hand is designed to be configured to recognize many internal connections that MEF does
not directly encode. Ast roData detects the type of the data, and then can make assumptions about what the data is
and how to handle it. Any particular (Python-level) actions on the data are then performed by implementations in the
configuration space.

2.1.2 Meta-Data

An additional role of the Ast roData abstraction is to standardize access to metadata. FITS allows copious metadata
in each extension and in the shared Primary Header Unit (PHU), but it standardizes only a small subset of what sort
of information is stored there. Many properties which are for Gemini essentially universal properties for all of our
datasets, across instruments and modes, are not standardized by FITS. For different instruments and modes these bits of
information are distributed across different header key-value pairs and stored in different units. This leads to a situation
where there is information that is in principle available in all datasets, but which requires instrument-mode-specific
coding to be retrieved in a particular unit and with a particular technical meaning. AstroData hides the particulars by
allowing functions that calculate the metadata to be defined in the same configuration space in which the dataset type
itself is defined.

The AstroDataType system is able to look at any aspect of the dataset to judge if it belongs in a given classification, but
the intent is to find characteristics in the MEF’s PHU. Using this knowledge, AstroData loads and applies particular
instrument-mode-specific methods to obtain general behavior through a uniform interface, as desired for the developer.
This uniform interface can be presented not only in the case of meta-data but also in the case of transformations and
any other dataset-type-specific behavior.

Astrodata Package Programmer’s Manual, Release 1.0beta

2.2 AstroData Lexicon

A lexicon is a list of words, and this is what the designer of an Astrodata configuration creates. The set of terms adhere
to a grammar (types of elements that can be defined) and establishes a vocabulary about dataset types, metadata, and
transformations. Firstly, the configurations define string type names, and criteria by which they can be identified as a
given type of dataset. Then they construct names for and describe metadata one expects to be associated with these
datasets. Finally they create names for and describe transformations that can be performed on datasets.

Datasets of particular Astrodata Types can thus be recognized by astrodata and the other type-specific behaviors can
be assigned. For example, the “astrodata_Gemini” package is the public configuration package defining data taken by
Gemini instruments. Descriptors for all instruments have been created, and early implementations of primitives for
GMOS_IMAGE and GMOS are available (and under continued development).

The astrodata package itself has no built-in type or descriptor definitions. It contains only the infrastructure to load such
definitions from an astrodata configuration package directory (the path of which must appear in the PYTHONPATH,
RECIPEPATH, or ADCONFIGPATH environment variables as a directory complying with the “astrodata_xxx” nam-
ing convention, and containing at least one of either ADCONFIG_<whatever> or RECIPES_<whatever> sub-
packages.

Here is an part of the Gemini type hierarchy, the GMOS_IMAGE branch of the GMOS types:

<img alt="GMOS AstroData Type Tree” style="margin:.5em;padding:.5em; border:1px black solid” width = “90%”
src="http://ophiuchus.hi.gemini.edu/ADTYPETREEIMAGES/GMOS_IMAGE-tree- pd.png“/>

This diagram shows GMOS_IMAGE is a child type of the GMOS type, which in turn is a child of the GEMINI type.
The children of GMOS_IMAGE are other types which share some or all common primitives or other properties with
GMOS_IMAGE, but which may in some cases require special handling. The diagram shows descriptor calculator and
primitive set assignments. A descriptor calculator (a set of descriptor functions) is assigned to GMOS, from which
GMOS_IMAGE and GMOS_SPECT inherit the same descriptors as there is nothing more specific assigned.

The graph also shows primitive sets assigned to GEMINI, GMOS, and GMOS_IMAGE. Since a primitive set specific
to GMOS_IMAGE is present in the configuration, it would be used for transformations applying to GMOS_IMAGE
datasets rather than the GMOS or GEMINI primitives. However the primitive set class for GMOS_IMAGE happens
to be defined in astrodata_Gemini as a child class of the GMOS primitive set, and the GMOS primitive set as the child
of the GEMINI primitive set, so in fact, the members can be shared unless intentionally overridden.

Primitives associated with the GEMINI Astrodata Type are generally just bookkeeping functions which rely on features
of the Recipe System as few pixel transformations can be entirely generalized across all Gemini datasets, though some
can.

2.2.1 The Astrodata Lexicon and Configurations

An astrodata configuration package defines a lexicon that includes types, metadata, and transformations that AstroData
and the RecipeSystem can use transparently. A combination of location and naming conventions allows the configu-
rations author to define elements in a way that astrodata can discover. In the current system there are three types of
elements to be concerned with:

« dataset classification names, Astrodata Types

* high level metadata names, Astrodata Descriptors

* scientifically meaningful discrete dataset transformation names, Primitives
Each of these have associated actions:

» Astrodata Type: checks a dataset for adherence to AstroData type classification criteria, generally by checking
key-value pairs in the PHU.

¢ Astrodata Descriptors: calculate and return high-level metadata for a particular Astrodata Type.

4 Chapter 2. Concepts

http://ophiuchus.hi.gemini.edu/ADTYPETREEIMAGES/GMOS_IMAGE-tree-pd.png

Astrodata Package Programmer’s Manual, Release 1.0beta

* Primitives: performs a transformation on a dataset of a particular Astrodata Type.

The astrodata_Gemini package contains these definitions for Gemini datasets separated into two parts, one for
the basic AstroData related configuration information, and another for Recipe System configuration. The first section,
in its own subdirectory in the configuration package directory. In Gemini’s case is found in the ADCONFIG_Gemini
configuration subdirectory. Configurations in this subdirectory define types, descriptor functions, and other AstroData-
related features. The second section, in a sibling subdirectory in the configuration package, in Gemini’s case,
RECIPES_Gemini. There are defined configurations and implementations needed by the Recipe System, such
as recipes and primitives.

2.3 Astrodata Type

An Astrodata Type is a named set of dataset characteristics.

The lack of a central system for type detection in our legacy package meant that scripts and tasks made extended
checks on the header data in the datasets they manipulate. Often these checks only verify that the right type of data is
being worked on, a very common task, yet these checks can still be somewhat complex and brittle, for example relying
on specific headers which may change when an instrument is upgraded.

To first order, Astrodata Types map to instrument-modes, and these provide a good concrete image of what Astrodata
Type are. However more abstract types of dataset identification are also possible and make themselves useful, such as
generic types such as “IFU” vs “IMAGE”, or processing status types such as “RAW” vs “PREPARED”.

The Astrodata classification system on the other hand allows the defining of dataset classifications via configuration
packaging such that the type definitions are shared throughout the system. The calling code can refer to type informa-
tion by a string name for the type, and any subtleties in or changes to the means of detection are centralized, providing
some forward and backward compatibility. The system also allows programmers to check dataset types with a single
line of code:

from astrodata.AstroData import AstroData
ad = AstroData ("N20091027S0134.fits")

if ad.isType ("GMOS_IMAGE") :
gmos_specific_function (ad)

if ad.isType ("RAW") == False:
print "Dataset is not RAW data, already processed."
else:

handle_raw_dataset (ad)

The isType (..) function on lines 5 and 8 above is an example of one-line type checking. The one-line check
replaces a larger set of PHU header checks which would otherwise have to be used. Users benefit in a forward-
compatible way from any future improvements to the named type, such as better checks or incorporation of new
instruments and modes, and also gain additional sophistication such as type-hierarchy relationships which are simply
not present with the legacy approach.

The most general of benefits to a clean type system is the ability to assign type-specific behaviors and still provide the
using programmer with a consistent interface to the type of functionality involved.

2.4 Astrodata Descriptors

A descriptor is named metadata.

2.3. Astrodata Type 5

Astrodata Package Programmer’s Manual, Release 1.0beta

Significant amounts of information about the data is present along with the pixel data and much of it is important to
data analysis processes. The MEF file structure supports such meta-data in the Primary Header Unit and the header
section of the extensions.

The problem retrieving metadata consistently is that while the values of interest are stored in some form in the headers,
the header key names do not follow consistent conventions across instruments. It’s easy to assume that there is a one to
one relationship between particular metadata headers of different instrument-modes and that the discrepancy is that the
developers have merely chosen different header key names. If that were the entire problem a table oriented approach
could be used and one could look up the proper header key name for a particular named piece of metadata based on
the type of dataset. This particular key would be used to look up the information in the headers.

However, this table-driven approach is not workable because the situation turns out to be more complex. Firstly, the
units of the given header value may be different for different instruments and modes. A table could be expanded
to have columns for the value’s storage and return type, but expanding the table in this way would also still not be
sufficient for the general case.

The decisive complications that preclude a simple table look-up approach are two, and lead us to a function-based
approach. One, the information needed to provide the named metadata is sometimes distributed across multiple
key/header values. These require combination or computation, and for different instruments and modes the distri-
bution and combination required differ. Two, a correct calculation of the metadata sometimes requires use of look-up
tables that must be loaded from a configuration space with instrument-specific information, based on the dataset’s
Astrodata Type.

For metadata which complies with the more simple expectations, widely shared descriptors for some metadata are
standard functions able to lookup the meta-data based on standard names or using simple rules that generalize whatever
variation there is in the storage of that particular meta-data across different instruments. While it is possible for a
descriptor to store its calculated value in the header of the dataset, and return that if called again, essentially caching
the value in the header, Gemini descriptors choose as a matter of policy to always recalculate, and leave such caching
schemes to the calling program.

A complete descriptor definition includes the proper unit for the descriptor and a conceptual description. E.g. Any
CCD based data will have an associated “gain”, relating to the electronics used to take the image. Given an AstroData
instance, ad , to get the “gain” for any supported Astrodata Type, you would use the following source code regardless
of the instrument-mode of the dataset:

gain = ad.gain()
Because the proper descriptors are assigned to the correct Astrodata Types for Gemini Instruments, the line above will

take into account any type-specific peculiarities that exist for the supported dataset. The current ADCONFIG_Gemini
configuration implementation has descriptors present for all Gemini instruments.

2.5 RecipeSystem

2.5.1 Recipes and Primitives

The Astrodata package’s “Recipe System” handles all abstractions involved in transforming a dataset and is built
on top of the AstroData dataset abstraction. The system is called the Recipe System because the top level instruc-
tions for transforming data are “recipes”, text files of sequential instructions to perform. For example the recipe
makeProcessedBias contains the following:

code-block:: python

linenos

prepare addDQ addVAR(read_noise=True) overscanCorrect addToList(purpose="forStack”)
getList(purpose="forStack”) stackFrames storeProcessedBias

6 Chapter 2. Concepts

Astrodata Package Programmer’s Manual, Release 1.0beta

Each of these instructions is either a “primitive”, which is a python function implemented in the configuration space
for a dataset of the given classification, or another recipe.

Zero Recipe System Overhead for AstroData-only Users

Use of the AstroData class does NOT lead to importing any part of the “Recipe System”. Thus there there is no
overhead borne by users of the AstroData dataset abstraction if they do not specifically invoke the Recipe System.
However, the configuration package must be loaded to retrieved Descriptors and AstroDataTypes.

2.6 Recipe System Primitives

2.6.1 Primitives

A primitive is a transformation.

A primitive is an specific dataset transformation for which we will want to assign concrete implementations for the As-
trodata Type. For example, subt ract Sky is a transformation that has meaning for a variety of wavelength regimes
which involve subtracting sky frames from the science pixels. Different instruments in different modes will require
different implementations for this transformation, due both to differences in the data type and data layout produced by
a particular instrument-mode, and also due to different common reduction practices in different wavelength regimes.

Recipe and primitive names both play a role bridging the gap between what the computer does and what the science
user expects to be done. The primitives are meant to be human-recognizable steps such as come up in a discussion
among science users about data flow procedures. The recipes are, loosely, the names of data processing work. This puts
a constraint on how functionally fine grained primitives should becomes. For example at Gemini we have assumed the
concept of primitives as “scientifically meaningful” steps means the data should never be in an incoherent or invalid
state, scientifically, after a given step. Each step is at least a mini-milestone in a reduction process. So, for example,
no primitive should require another primitive to be run subsequent in order to complete its own transformation, and
primitives should always output valid, coherent datasets. For example, there should not be a primitive that modifies
pixel data which is followed by a primitive which modifies the header to reflect the change, and instead both steps
should be within such a primitive so the data is never reported to the system in an invalid or misleading state.

Recipes can also call other recipes. This allows refactoring between recipes and primitives as the set of transformation
evolves. A recipe called by a higher level recipe is seen as an atomic step at the level of the calling recipe. Coherent
steps which can be broken down into smaller coherent steps are thus probably best addressed with a recipe calling a
recipe. This feature helps recipes to work for more types. In the end though, primitives have to be executed so that
actual python can run and manipulate the dataset. Below a certain level of granularity primitives become inappropriate.
Such code, insofar as it is reusable and/or needs to be encapsulated, is written as functions in utility libraries, such as
the Gemini gempy package.

Formalizing the transformation concept allows us to refactor our data reduction approaches for unforeseen compli-
cations, new information, new instruments, and so on, without having to necessarily change recipes that call these
transformations, or the named transformations which the recipes themselves represent. Recipes for specific nodes in
the Astrodata Type tree can also be assigned as needed, and the fact that recipes and primitives can be used by name
interchangeably ensures that transformations can be refactored and solved with different levels of recipes and primi-
tives. This flexibility helps us expand and improve the available transformations while still providing a stable interface
to the user.

AstroData is intended to be useful for general Python scripting, that is, one does not have to write code in the form
of primitives to use Astrodata. Also, the Recipe System is not automatically imported (i.e. as a result of “import
astrodata”) so that no overhead is borne by the AstroData user not making use of automation features. A script
using AstroData benefits from the type, descriptor, validation, and other built in data handling features of AstroData.
However, such scripts do not lend themselves to use in a well-controlled automated system, and thus the Recipe

2.6. Recipe System Primitives 7

Astrodata Package Programmer’s Manual, Release 1.0beta

System is provided for when there is need for such a system in which to execute the transformation, as with the
Gemini Pipeline projects. Unconstrained python scripts lack a consistent control and parameter interface.

When writing primitives all inputs are provided through the Reduction Context, and depending on the control system
these may come from the unix command line, the pyraf command line, from a pipeline control system or other
software, or by the calling recipes and primitives. Primitive functions are written as Python generators, allowing the
control system to perform some tasks for the primitive, such as history keeping and logging, keeping lists of stackable
images, retrieving appropriate calibrations, and reporting image statistics to a central database, etc., when the primitive
“yields”.

The automation system is designed to support a range of automation, from a “dataset by dataset, fully automated”
mode for pipeline processing of data as it comes in from the telescope, through to “interactive automation” where the
user decides at what level to initiate automation and where to intervene.

For advanced users it may be of interest that strictly speaking primitives transform the ReductionContext object
and not only the input datasets. This context contains references to all objects and datasets which are part of the
reduction, including the input dataset. While nearly all primitives will access their input datasets and most will modify
the datasets and report them as outputs to the reduction context, some primitives may calculate statistics and report
these to the reduction context without reporting pixel data outputs. In this case the stream inputs will be propagated
as inputs to the subsequent primitive. It is the Reduction Context as a whole that is passed into the primitives as the
standard and sole argument (besides self) for the primitive. The reduction context must be left in a coherent state upon
exit from a primitive.

Below is a prototype recipe in use in our development environment for testing. It performs some initial processing on
RAW data.

prepare
overscanSub
overscanTrim
biasSub

flatField
findshiftsAndCombine

If that recipe is generic, this means, given that primitive sets for GMOS_IMAGE, NIRI_IMAGE, etc, implement the
named primitives in the recipe, then when the recipe system executes a line such as biasSub , it will execute the
“biasSub” member of the appropries PrimitiveSet associate with that type. Thus, if prepare can be implemented for
both types, while biassub requires GMOS and NIRI- specific implementations, then “prepare” can be implemented as
a shared recipe or in the GEMINI primitive set, while those that require special implementation are implemented in
the appropriate GMOS or NIRI primitive sets within the correct part of the configuration.

2.6.2 Some Benefits of the Primitive Concept

The use of primitives instead of scripts for reduction processes has a side benefit besides enjoying automation features
supplied by the Recipe System. This benefit is due to the fact that the concept of the primitive as a named transforma-
tion is bound to the spoken language that Instrument Scientists, astronomers, data analysts and the data software group
at Gemini use to discuss data flow procedures. This crossover between terms in our formal system and in our less
formal spoken language has promoted consistency between the two. For example, when breaking reductions down
into discrete chunks which can be implemented and shared when possible the process helps us understand what truly
differentiates implementations of the same named transformation. Sharing of code not only saves developers the effort
of reimplementation, but more importantly it promotes consistency and provides locations in the system where wide
ranging changes in policy can be implemented, accommodating the inevitable evolution of reduction software.

In short, discussing how to break down typical reduction procedures into recipes made of reusable primitives has had
the effect of clarifying our understanding of these procedures. Sometimes the responsibilities of tasks in our legacy
system had clear boundaries, such as for gemarith , but for other tasks, such as the “prepare” task in each instrument’s
package, the boundaries of responsibility were less clear. Adapting transformation concepts which are already in our
spoken lexicon to a more structured software environment represented with concrete implementations, guides us to

8 Chapter 2. Concepts

Astrodata Package Programmer’s Manual, Release 1.0beta

creating a clearer definition for prepare. Flexibility in the system allows satisfaction of any special needs while
developing truly shared transformation concepts.

Natural Emergence of Reusable Primitives

Reusable code naturally emerges from the process above because the work of isolating the steps in a data handling
process naturally reveals similar or identical steps present in other processes, which can then easily be implemented
at a shared level. In practice, even if creating a recipe that is over-all very instrument and mode-specific, there seem
to emerge general purpose steps which can be of benefit in a toolkit of primitives. New project-specific tasks will be
able to select from and reuse them freely.

Authors of primitives have several options based on the needs of the project at hand:
1. generalize the previous attempt at a general solution to leverage the work already done
2. write a new generalization
3. write a version which is primarily designed to be useful as a primitive in the project’s use case

The design of the recipes and primitives of the Recipe System is intended to facilitate negotiating these options in an
environment with fall-backs and which does not cement you into a particular layout of your transformations.

Test Case at Gemini Observatory: Refactoring Python Scripts into Recipes and Primitives

We (GDPSG and DA teams) have performed the exercise of breaking down a set of pre-existing scripts into recipes
and primitives in the case of some instrument monitoring scripts which are set up on a cron job. Separate from the
issue of the quality of the code being thus preserved, the procedure for refactoring into the recipe/primitive form turned
out relatively easy and to involve the following:

1. Finding where (potential) milestone states of the data occur in the script being refactored. These are places
where the dataset and headers are coherent, and any information the reduction context should be informed of
has been prepared and is available. Note, some potential milestone states, when considered too fine grained will
be bundled together as a single transformation.

2. Naming the source code between each of these milestone states, and identifying its input, output, and specific
responsibilities.

3. Cutting and pasting (or re-entering) source from the script into a primitive set class, adding adapter code which
fetches or stores information in the reduction context to and from variables the script uses in its legacy form.
The code can be largely left as-is since primitives are simply python code, so long as input/output is adapted to
the reduction context.

4. Writing a recipe is using the steps created above.

Regarding the quality of the code thus being preserved, while it was minimal upon analysis, as is often the case it had
the advantage of being deployed and functional. It is the intent of the Recipe system to allow rapid adaptation of code
into the system, as well as to enable more intimately and well behaved transformations to be integrated, and for there
to be iterative refactoring paths from the former to the latter.

The primitives in the test case were developed into a separate recipe package (not in
astrodata_Gemini/RECIPES_Gemini) which is added to the Astrodata package’s RECIPEPATH envi-
ronment variable.

Even with lack of a formal structure to the refactoring, and the devil-you-know approach to preserving the functioning
of the code, the process of adaptation to the recipe/primitive structure provides some natural order and formalism in
the process of identifying the de facto transformations in the script. Improvement is incremental. But even in this
case, at the very least, the above analysis will lead to a sequential list of the steps in the script. That alone is a good
starting point for making a complete replacement if that is necessary. Subsequent work on the recipes and component

2.6. Recipe System Primitives 9

Astrodata Package Programmer’s Manual, Release 1.0beta

primitives only improves the exposure of the work, the consciousness of the ordering of operations, and merging of
common functionality into common code.

In the case of our instrument monitoring example the result of the refactoring to the Recipe System is functional and
in use. The resulting recipes made use of some primitives from the Gemini library of primitives, and could benefit
from more refactoring allowing both some primitives from the main package to be used (i.e. the scripts performed, and
primitives were adapted around a custom “prepare” step on GMOS data), and also to allow several of the primitives
created to be made more robust and moved into the main package.

2.6.3 Recipes calling Recipes

Recipes can call other recipes. Primitives, also, can call recipes or other primitives. During execution, the Astrodata
Recipe System makes little distinction between recipes and primitives and from the view of those invoking recipes and
primitives, recipe and primitive names are interchangeable. For example, a user executing recipes through the reduce
command line program can just as easilly give a primitive name to the “reduce” command as a “recipe” name, and
reduce will execute the primitive correctly. Still the general picture we tend to speak of is one in which we have a top
level recipe for standard processes such as making a processed bias, which list the steps that the data must go through
to complete the processing named by the recipe.

It is a judgment call how fine grained the steps in a recipe should be, and this in principle drives how fine grained
primitives should be. However, what is appropriate to view in a recipe of a certain name and scope may not be
the same granularity level which is appropriate for specialists in the data regime being processed, as the recipe will
in general be associated with some general purpose concepts, and should have meaning for someone with general
purpose knowledge. Sometimes if the top level recipe were to name every step which an Instrument Analyst or Data
Processing Developer found distinct and “scientifically meaningful” this would lead to a too finely grained list of steps,
which would obscure the big picture of how the transformation named is executed.

In this case, which is common, then the more finely grained steps should be bundled together into recipes which then
are used as single statements in higher level recipes. The ability for recipes to call recipes ensures steps can be named
whatever is semantically appropriate for whatever the scope of the transformation named might be. At one extreme
the recipe system can support a processing paradigm in pipelines which invokes reduction with the most general
instructions, “do the appropriate thing for the next file”, and at the other extreme it allows users to decide what to treat
as atomic processes and when to intervene.

The fact that primitives (should) always leave datasets at some milestone of processing provides some security for the
user that they will not perform an operation that puts the dataset in an incoherent state. Breaking down recipes into
sub-recipes and so on into primitives truncates at the lowest level when we have primitives that, however focused,
modify the data (or reduction context) in some significant way and leave the dataset at some milestone of reduction,
however minor a “milestone” it may be. It’s also possible, especially if a primitive is adapted from a script, that a
primitive will be monolithic, and cannot be broken down into a recipe until more finely grained primitives are created.
The interchangeability of recipes and primitive names is meant to encourage such refactoring, as any reusable set of
primitives is considered more useful than a monolithic primitive performing all the functions of the reusable set at
once.

10 Chapter 2. Concepts

CHAPTER
THREE

ASTRODATA CLASS REFERENCE

The following is information about the Ast roData class. For descriptions of arguments shown for the class con-
structor, see AstroData.__init__ (..). This documentation is generated in part from in-source docstrings.

To import the Ast roData class use:

from astrodata import AstroData

3.1 AstroData Class

class astrodata.data.AstroData (dataset=None, mode="readonly’, phu=None, header=None,
data=None, store=None, storeClobber=False, exts=None, extln-

sts=None)
The AstroData class abstracts datasets stored in MEF files and provides uniform interfaces for working on

datasets from different instruments and modes. Configuration packages are used to describe the specific data
characteristics, layout, and to store type-specific implementations.

ME-Fs can be generalized as lists of header-data units (HDU), with key-value pairs populating headers, and pixel
values populating the data array. AstroData interprets a MEF as a single complex entity. The individual “exten-
sions” within the MEF are available using Python list (“[]”) syntax; they are wrapped in AstroData objects (see
AstroData.__getitem__ ()). AstroDatauses pyfits for MEF I/O and numpy for pixel manipulations.

While the pyfits and numpy objects are available to the programmer, AstroData provides analogous
methods for most py £it s functionalities which allows it to maintain the dataset as a cohesive whole. The pro-
grammer does however use the numpy . ndarrays directly for pixel manipulation. Simple AstroData arith-
metic is also provided by the astrodata.adutils.arith module which implement AstroData methods
for addition, subtraction, multiplication and division.

In order to identify types of dataset and provide type-specific behavior, Ast roData relies on configuration
packages either in the PYTHONPATH environment variable or the Ast rodata package environment variables,
ADCONFIGPATH and RECIPEPATH. A configuration package (eg. astrodata_Gemini) contains defini-
tions for all instruments and modes. A configuration package contains type definitions, meta-data functions,
information lookup tables, and any other code or information needed to handle specific types of dataset.

This allows AstroData to manage access to the dataset for convenience and consistency. For example,
AstroData is able:

*to allow reduction scripts to have easy access to dataset classification information in a consistent way
across all instruments and modes;

*to provide consistent interfaces for obtaining common meta-data across all instruments and modes;

*to relate internal extensions, e.g. discriminate between science and variance arrays and associate them
properly;

11

Astrodata Package Programmer’s Manual, Release 1.0beta

*to help propagate header-data units important to the given instrument mode, but unknown to general pur-
pose transformations.

In general, the purpose of Ast roData is to provide smart dataset-oriented interfaces that adapt to dataset type.
The primary interfaces are for file handling, dataset-type checking, and managing meta-data, but Ast roData
also integrates other functionalities.

3.2 Basic Functions

3.2.1 AstroData Constructor

AstroData.__init__ (dataset=None, mode="readonly’, phu=None, header=None, data=None,

store=None, storeClobber=False, exts=None, extInsts=None)
The AstroData constructor constructs an in-memory representation of a dataset. If given a filename it uses

pyfits to open the dataset, reads the header and detects applicable types. Binary data, such as pixel data, is
left on disk until referenced.

Parameters

* dataset (string, AstroData, HDUList) — the dataset to load, either a filename (string) path
or URL, an AstroData instance, or a pyfits.HDUList. If dataset is None, phu,
header, and data will be used.

ELINNY3

* mode (string) — 10 access mode, same as pyfits mode (“readonly”, “update”, or “ap-
pend”) with one additional AstroData-specific mode, “new”. If the mode is “new”, and a
filename is provided, the constructor checks that the named file does not exist on disk, and if
it does not it creates an empty Ast roData of that name but does not write it to disk. Such
an AstroData instance is ready to have HDUs appended, and to be written to disk at the
user’s command with ad.write ().

* phu (pyfits.core.Header) — Primary Header Unit. A basic PHU will be created if none is
provided. If dataset is set, phu will be ignored.

* header - extension header for image (eg. hdulist[1l] .header,
ad[0] .hdulist[1] .header, ad[’SCI’,1].hdulist[1l].header) Only
one header can be passed in, lists are not allowed. If header is defined, data must also
be defined.

» data (numpy.ndarray) — the image pixel array (eg. hdulist[1l].data,
ad[0] .hdulist[1] .data, ad[’SCI’,1].hdulist[1l].data) Only one
data array can be passed in, lists are not allowed. If data is defined, header must also be
defined.

* store (string) — directory where a copy of the original file will be stored. This is used in the
special case where the filename is an URL to a remote fits file. Otherwise it has no effect.

* storeClobber (boolean) — remote file handling for existing files with the same name. If true
will save, if not, will delete.

o exts (list) — (advanced) a list of extension indexes in the parent HDUL1i st that this instance
should refer to, given integer or (EXTNAME, EXTVER) tuples specifying each extension in
the pyfits index space where the PHU is at index O, the first data extension is at index 1,
and so on. L.e. This is primarily intended for internal use when creating “sub-data”, which
are AstroData instances that represent a slice, or subset, of some other AstroData instance.

NOTE: if present, this option will override and obscure the ext Insts argument, in other
word ext Insts will be ignored.

12 Chapter 3. AstroData Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

Example of sub-data:
sci_subdata = ad["SCI"]

The sub-data is created by passing “SCI” as an argument to the constructor. The
‘sci_subdata’ object would consist of its own AstroData instance referring to it’s own
HDUList, but the HDUs in this list would still be shared (in memory) with the ad object,
and appear in its HDUList as well.

* extInsts (list of pyfits. HDU objects) — (advanced) A list of extensions this instance should
contain, specified as actual pyfits.HDU instances. NOTE: if the ext s argument is also
set, ext Insts is ignored.

3.2.2 append(..)

AstroData.append (moredata=None, data=None, header=None, auto_number=False,
do_deepcopy=False)

Parameters

* moredata (pyfits. HDU, pyfits. HDUList, or AstroData) — either an AstroData instance, an
HDUList instance, or an HDU instance to add to this AstroData object. When present, data
and header arguments will be ignored.

» data (numpy.ndarray) — data and header are used to construct a new HDU which is
then added to the HDUL1ist associated to the AstroData instance. The data argument
should be set to a valid numpy array. If modedata is not specified, data and header
must both be set.

* header (pyfits.Header) — data and header are used to construct a new HDU which is
then added to the HDUList associated to AstroData instance. The header argument
should be set to a valid pyfits.Header object. If moredata is not specified, data
and header must both be set.

e auto_number (boolean) — auto-increment the extension version, EXTVER, to fit file con-
vention

* extname (string) — extension name as set in keyword EXTNAME (eg. ‘SCI’, ‘VAR’, ‘DQ’)
This is used only when header and data are used and moredata is empty.

* extver (int) — extension version as set in keyword EXTVER. This is used only when header
and data are used and moredata is empty.

* do_deepcopy (boolean) — deepcopy the input before appending. Might be useful when
auto_number is True and the input comes from another AD object.

This function appends header-data units (HDUs) to the AstroData instance.

3.2.3 close(..)

AstroData.close ()
The close(..) function will close the HDUL1 st associated with this Ast roData instance.

3.2.4 inseri(..)

AstroData.insert (index, moredata=None, data=None, header=None, auto_number=False,
extname=None, extver=False, do_deepcopy="False)

3.2. Basic Functions 13

Astrodata Package Programmer’s Manual, Release 1.0beta

Parameters

* index (integer or (EXTNAME,EXTVER) tuple) — the extension index, either an int or
(EXTNAME, EXTVER) pair before which the extension is to be inserted. Note, the first
data extension is [0], you cannot insert before the PHU. Index always refers to Astrodata
Numbering system, 0 = HDU

* moredata (pyfits. HDU, pyfits. HDUList, or AstroData) — Either an AstroData instance, an
HDUList instance, or an HDU instance. When present, data and header will be ignored.

» data (numpy.ndarray) — data and header are used to construct a new HDU which is
then added to the HDUL1ist associated to the AstroData instance. The data argument
should be set to a valid numpy array. If modedata is not specified, data and header
must both be set.

* header (pyfits.Header) — data and header are used to construct a new HDU which is
then added to the HDUList associated to AstroData instance. The header argument
should be set to a valid pyfits.Header object. If moredata is not specified, data
and header must both be set.

e auto_number (boolean) — auto-increment the extension version, EXTVER, to fit file con-
vention If set to True, this will override the ‘extver’ and ‘extname’ arguments settings.

* extname (string) — extension name (eg. ‘SCI’, ‘“VAR’, ‘DQ’)
* extver (integer) — extension version (eg. 1, 2, 3)

* do_deepcopy (boolean) — deepcopy the input before appending. Might be useful when
auto_number is True and the input comes from another AD object.

This function inserts header-data units (HDUSs) to the AstroData instance.

3.2.5 info(..)

AstroData.info (oid=False, table=False, help=False)
The info(..) function prints to the shell information regarding the phu and the extensions found in an AstroData
object. It is a high-level wrappers for infostzr (. .)

3.2.6 infostr(..)

AstroData.infostr (as_html=False, oid=False, table=False, help=False)
Parameters
* as_html (bool) — return as HTML formatted string
* oid (bool) — include object id
¢ help (bool) — include sub-data reference information

The infostr(..) function is used to get a string ready for display either as plain text or HTML. It provides
AstroData-relative information.

3.2.7 write(..)

AstroData.write (filename=None, clobber=False, rename=None, prefix=None, suffix=None)

Parameters

14 Chapter 3. AstroData Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

* filename (string) — name of the file to write to. Optional if the instance already has a file-
name defined, which might not be the case for new AstroData instances created in memory.

* clobber (bool) — This flag drives if AstroData will overwrite an existing file.

* rename (bool) — This flag allows you to write the AstroData instance to a new filename, but
leave the ‘current’ name in tact in memory.

* prefix — Add a prefix to filename.
type prefix: string :param suffix: Add a suffix to £ilename. type suffix: string

The write function acts similarly to the pyfits HDUList.writeto (..) function if a filename is given, or
like pyfits.HDUList .update (..) if noname is given, using whatever the current name is set to. When
a name is given, this becomes the new name of the Ast roData object and will be used on subsequent calls
to write for which a filename is not provided. If the clobber flag is False (the default) then write (. .)
throws an exception if the file already exists.

3.3 Type Information

AstroData.is_type (*typenames)
Parameters typenames (string or list of strings) — specifies the type name to check.
Returns True if the given types all apply to this dataset, False otherwise.
Return type Bool

This function checks the Ast roData object to see if it is the given type(s) and returns True if so. If a list of
types is given as inputs, all the types must match the Ast roData object.

Note AstroData.check_type (..) isanalias for AstroData.is_type(..).
AstroData.get_types (prune=False)

Parameters prune (bool) — flag which controls ‘pruning’ the returned type list so that only the leaf
node type for a given set of related types is returned.

Returns a list of classification names that apply to this data
Return type list of strings

The get_types(..) function returns a list of type names, where type names are as always, strings. It is possible to
‘prune’ the list so that only leaf nodes are returned, which is useful when leaf nodes take precedence such as for
descriptors.

KL: Please add definition of “leaf node”.

Note: types are divided into two categories, one intended for types which represent processing status (i.e. RAW
vs PREPARED), and another which contains a more traditional ‘typology’ consisting of a hierarchical tree of
dataset types. This latter tree maps roughly to instrument-modes, with instrument types branching from the
general observatory type, (e.g. ‘GEMINI’).

To retrieve only status types, use get_status(..); to retreive just typological types use get_typology(..). Note that
the system does not enforce what checks are actually performed by types in each category, that is, one could
miscategorize a type when authoring a configuration package. Both classifications use the same DataClassifica-
tion objects to classify datasets. It is up to those implementing the type-specific configuration package to ensure
types related to status appear in the correct part of the configuration space.

Currently the distinction betwen status and typology is not used by the system (e.g. in type-specific default
recipe assignments) and is provided as a service for higher level code, e.g. primitives and scripts which make
use of the distinction.

3.3. Type Information 15

Astrodata Package Programmer’s Manual, Release 1.0beta

AstroData.get_status (prune=False)
This function returns the set of type names (strings) which apply to this dataset and which come from the
status section of the AstroData Type library. ‘Status’ classifications are those which tend to change during the
reduction of a dataset based on the amount of processing, e.g. RAW vs PREPARED. Strictly, a ‘status’ type
is any type defined in or below the status part of the classification directory within the configuration
package. For example, in the Gemini type configuration this means any type definition files in or below the
‘astrodata_Gemini/ADCONFIG/classification/status’ directory.

Returns a list of string classification names
Return type list of strings

AstroData.get_typology (prune=False)
This function returns the set of type names (strings) which apply to this dataset and which come from the
typology section of the AstroData Type library. ‘Typology’ classifications are those which tend to remain
with the data in spite of reduction status, e.g. those related to the instrument-mode of the dataset or of
the datasets used to produce it. Strictly these consist of any type defined in or below the correct con-
figuration directory, for example, in Gemini’s configuration package, it would be anything in the ‘“astro-
data_Gemini/ADCONFIG/classification/types” directory.

Returns a list of classification name strings

Return type list of strings

3.4 Header Manipulations

Manipulations of headers, specifically retrieving and setting key-value pair settings in the header section of header-data
units can be done directly using the AstroData header manipulation functions which cover both PHU and extension
headers. For higher level metadata which is available for all types in the tree in a properly constructed configuration
space, the metadata is retrieved with descriptor functions, accessed as members of the AstroData object.

To retrieve or set meta-data not covered by descriptors, one must read and write key-value pairs to the HDU headers
at the lower-level. AstroData offers three pairs of functions for getting and setting header values, for each of three
distinct cases. While it is possible to use the pyfits.Header directly (available via “ad[..].header”), it is preferrable to
use the AstroData calls which allow AstroData to keep type information up to date, as well as to update any other
characteristics of the AstroData object which may need to be maintained when the dataset is changed.

The three distinct pairs of header access functions serve the following purposes:
* set/get headers in PHU.
* set/get headers in the single extension of a “single-HDU AstroData object”.

* set/get headers in an extension of a multi-HDU (aka “multi-extension”) AstroData instance. This requires
specifying the extension index, and cannot be used to modify the PHU. HDU #0 is the first real header-data
section in the MEF.

3.4.1 Set/Get PHU Headers

AstroData.phu_get_key_ value (key)
Parameters key (string) — name of header value to retrieve
Return type string

Returns the key’s value as string or None if not present.

16 Chapter 3. AstroData Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

The phu_get_key_value(..) function returns the value associated with the given key within the primary header
unit of the dataset. The value is returned as a string (storage format) and must be converted as necessary by the
caller.

AstroData.phu_set_key value (keyword=None, value=None, comment=None)
Add or update a keyword in the PHU of the AstroData object with a specific value and, optionally, a comment

Parameters
* keyword (string) — Name of the keyword to add or update in the PHU
* value (int, float or string) — Value of the keyword to add or update in the PHU

* comment (string) — Comment of the keyword to add or update in the PHU

3.4.2 Set/Get Single-HDU Headers

AstroData.get_key_value (key)
Parameters key (string) — name of header value to set
Returns the specified value
Return type string

The get_key_value(..) function is used to get the value associated with a given key in the data-header unit of a
single-HDU AstroData instance (such as returned by iteration).

Note Single extension AstroData objects are those with only a single header-data unit besides the
PHU. They may exist if a single extension file is loaded, but in general are produced by indexing
or iteration instructions, i.e.:

sead = ad[(“SCI”,1)]
for sead in ad[”’SCI”’]: ...

The variable “sead” above is ensured to hold a single extension AstroData object, and can be
used more convieniently.

AstroData.set_key_ value (key, value, comment=None)
Parameters
* key (string) — name of data header value to set
* value (int, float, string) — value to apply to header
* comment (string) — value to be put in the comment part of the header key

The set_key_value(..) function is used to set the value (and optionally the comment) associated with a given key
in the data-header of a single-HDU AstroData instance. The value argument will be converted to string, so it
must have a string operator member function or be passed in as string.

Note Single extension AstroData objects are those with only a single header-data unit besides the
PHU. They may exist if a single extension file is loaded, but in general are produced by indexing
or iteration instructions, i.e.:

sead = ad[(“SCI”,1)]
for sead in ad[”’SCI”’]: ...

The variable “sead” above is ensured to hold a single extension AstroData object, and can be
used more convieniently.

3.4. Header Manipulations 17

Astrodata Package Programmer’s Manual, Release 1.0beta

3.4.3 Set/Get Multiple-HDU Headers

AstroData.ext_get_key_ wvalue (extension, key)
Parameters

* extension (int or (EXTNAME, EXTVER) tuple) — identifies which extension, either an inte-
ger index or (EXTNAME, EXTVER) tuple

* key (string) — name of header entry to retrieve
Return type string
Returns the value associated with the key, or None if not present

This function returns the value from the given extension’s header, with “0” being the first data extension. To get
values from the PHU use phu_get_key_value(..).

AstroData.ext_set_key value (extension=None, keyword=None, value=None, comment=None)
Add or update a keyword in the header of an extension of the AstroData object with a specific value and, op-
tionally, a comment. To add or update a keyword in the PHU of the AstroData object, use phu_set_key_value().

Parameters

* extension (int or (EXTNAME, EXTVER) tuple) — Name of the extension to add or update.
The index [0] refers to the first extension in the AstroData object.

* keyword (string) — Name of the keyword to add or update in the extension
* value (int, float or string) — Value of the keyword to add or update in the extension

* comment (string) — Comment of the keyword to add or update in the extension

3.5 lteration and Subdata

3.5.1 Overview

Using Slices and “Subdata”

given:

ad = Ast oData("dataset.fits")
adsci = ad["SCI"]

| changes to ad[("SCI",1)] will affect adsci[("SCI",1
eg.
| ad.[("sCI",1)].data[100:1000,100:1000] = 100

would set the data in adsci[("SCI",1)] as well due

An AstroData instance is really a Python list of AstroData instances. However, internally the list is merely a list of
extensions and the AstroData.getitem(..) function (which implements the “[]” syntax) creates AstroData instances on
the fly when called. Such instances share information in memory with their parent instance. This is in line with the

18 Chapter 3. AstroData Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

general operation of pyfits and numpy, and in general how Python handles objects. This allows efficient use of memory
and disk I/O. To make copies one must explicitly ask for copies. Thus when one takes a slice of a numpy array, that
slice, although possibly of a different dimensionality and certainly of range, is really just a view onto the original
memory, changes to the slice affect the original. If one takes a subset of an AstroData instance’s HDUList, then the
save HDUs are present in both the original and the sub-data. To make a separate copy one must use the deepcopy
built-in function (see below).

As the diagram indicates, when taking a subset of data from an AstroData instance using the square brackets operator,
you receive a newly created AstroData instance which is associated only with those HDUs identified. Changes to a
shared HDU’s data or header member will be reflected in both AstroData instances. Generally speaking this is what
you want for efficient operation. If you do want to have entirely separate data, such that changes to the data sections
of one do not affect the other, use the python deepcopy operator:

from copy import deepcopy

ad = AstroData ("dataset.fits")
scicopy = deepcopy(ad["SCI"])

If on the other hand all you want is to avoid changing the original dataset on disk, and do not need the original
data, untransformed, in memory along with the transformed version, which is the usual case, then you can write the
AstroData subdata instance to a new filename:

from astrodata import AstroData

ad = AstroData("dataset.fits")
scicopy = ad["SCI"]
scicopy.write ("datasetSCI.fits")

3.5.2 count_exts(..)

AstroData.count_exts (extname=None)

Parameters extname (string) — the name of the extension, equivalent to the value associated with
the “EXTNAME” key in the extension header.

Returns number of extensions of that name
Return type int

The count_exts(..) function counts the extensions of a given name (as stored in the HDUs “EXTNAME” header).

3.5.3 The [] Operator

AstroData.__getitem__ (ext)

Parameters ext (string, int, or tuple) — The integer index, an indexing (EXTNAME, EXTVER)
tuple, or EXTNAME name. If an int or tuple, the single extension identified is wrapped with an
AstroData instance, and “single-extension”” members of the AstroData object can be used. If a
string, EXTNAME, is given, then all extensions with the given EXTNAME will be wrapped by
the new AstroData instance.

Returns an AstroData instance associated with the subset of data.
Return type AstroData

This function supports the “[]” syntax for AstroData instances, e.g. ad[(“SCI”,1)]. We use it to create AstroData
objects associated with “subdata” of the parent AstroData object, that is, consisting of an HDUList made up of
some subset of the parent MEF. e.g.:

3.5. lteration and Subdata 19

Astrodata Package Programmer’s Manual, Release 1.0beta

from astrodata import AstroData

datasetA = AstroData("datasetMEF.fits")
datasetB = datasetA[SCI]

In this case, after the operations, datasetB is an Ast roDat a object associated with the same MEF, sharing some
of the the same actual HDUs in memory as datasetA. The object in datasetB will behave as if the SCI
extensions are its only members, and it does in fact have its own pyfits.HDUList. Note that datasetA
and datasetB share the PHU and also the data structures of the HDUs they have in common, so that a change
to datasetA[(/SCI’,1)].data will change the datasetB[(' SCI’,1)].data member and vice
versa. They are in fact both references to the same numpy array in memory. The HDUList is a different
list, however, that references common HDUs. If a subdata related Ast roData object is written to disk, the
resulting MEF will contain only the extensions in the subdata’s HDUL1ist.

Note Integer extensions start at O for the data-containing extensions, not at the PHU as with
pyfits. This is important: ad[0] is the first content extension, in a traditional MEF per-
spective, the extension AFTER the PHU; it is not the PHU! In Ast roDat a instances, the PHU
is purely a header, and not counted as an extension in the way that headers generally are not
counted as their own elements in the array they contain meta-data for. The PHU can be accessed
via the phu Ast roData member of using the PHU related member functions.

3.6 Single HDU AstroData Attributes

3.6.1 data attribute

AstroData.data

The data property can only be used for single-HDU AstroData instances, such as those returned during iteration.
It is a property attribute which uses get_data(..) and set_data(..) to access the data members with “=" syntax. To
set the data member, use ad.data = newdata, where newdata must be a numpy array. To get the data member,
use npdata = ad.data.

AstroData.get_data ()

Returns data array associated with the single extension
Return type numpy.ndarray

The get_data (. .) member is the function behind the property-style “data” member and returns appropriate
HDU’s data member(s) specifically for the case in which the Ast roData instance has ONE HDU (in addition
to the PHU). This allows a single-extension AstroData, such as AstroData generates through iteration,
to be used as though it simply is just the one extension. One is dealing with single extension AstroData
instances when iterating over the AstroData extensions and when picking out an extension by integer or
tuple indexing, e.g.:

for ad in dataset[SCI]:
ad is a single—HDU index
ad.data = newdata

assuming the named extension exists,
sd will be a single-HDU AstroData
sd dataset [("SCI",1)]

AstroData.set_data (newdata)

Parameters newdata (numpy.ndarray) — new data objects

Chapter 3. AstroData Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

Raises Errors.SingleHDUMemberExcept if AstroData instance has more than one extension (not
including PHU).

This function sets the data member of a data section of an Ast roDat a object, specifically for the case in which

the AstroData instance has ONE header-data unit (in addition to PHU). This case is assured when iterating
over the Ast roData extensions, as in:

for ad in dataset[SCI]:

3.6.2 header attribute

AstroData.header

The header property can only be used for single-HDU AstroData instances, such as those returned during itera-
tion. It is a property attribute which uses get_header(..) and set_header(..) to access the header member with the

__9

=" syntax. To set the header member, use ad.header = newheader, where newheader must be a pyfits.Header
object. To get the header member, use hduheader = ad.header.

AstroData.get_header (extension=None)
Returns header

Return type pyfits.Header

Raises Errors.SingleHDUMemberExcept Will raise an exception if more than one extension ex-
ists. (note: The PHU is not considered an extension in this case)

The get_header (. .) function returns the header member for Single-HDU Ast roData instances, if exten-

sion is None (which are those that have only one extension plus PHU). This case can be assured when iterating
over extensions using AstroData, e.g.:

for ad in dataset[SCI]:

Otherwise, the extension can be specified. Either way, only one header for one extension is returned.
AstroData.set_header (header, extension=None)

Parameters

* header (pyfits.Header) — pyfits Header to set for given extension

* extension (int or tuple, pyfits compatible extension index) — Extension index to retrieve
header, if None or not present then this must be a single extension AstroData instance,

which contains just the PHU and a single data extension, and the data extension’s header is
returned.

Raises Errors.SingleHDUMemberExcept Will raise an exception if more than one extension ex-
ists.

The set_header (..) function sets the extension header member for single extension, if extension is None

(which are those that have only one extension plus PHU). This case is assured when iterating over extensions
using AstroData, e.g.:

for ad in dataset[SCI]:

Otherwise, the extension can be specified. Either way, only one header for one extension is operated upon.

3.6. Single HDU AstroData Attributes 21

Astrodata Package Programmer’s Manual, Release 1.0beta

3.6.3 Renaming an Extension

AstroData.rename_ext (name, ver=None, force=True)
Parameters
* name (string) — New ‘EXTNAME’ for the given extension.
* ver (int) — New ‘EXTVER’ for the given extension
* force (boolean) — Will update even on subdata, or shared hdulist. Default=True
Note: This member only works on single extension Ast roData instances.

The rename_ext (..) function is used in order to rename an HDU with a new EXTNAME and EXTVER
identifier. Merely changing the EXTNAME and EXTEVER values in the extensions pyfits.Header are not
sufficient. Though the values change in the pyfits.Header object, there are special HDU class members
which are not updated.

Warning This function manipulates private (or somewhat private) HDU members, specifically
‘name’ and ‘_extver’. STSCI has been informed of the issue and has made a special HDU
function for performing the renaming. When generally available, this new function will be
used instead of manipulating the HDU’s properties directly, and this function will call the new
pyfits.HDUList (..) function.

3.7 Module Level Functions

3.7.1 correlate(..)

astrodata.data.correlate (*iarray)
WARNING!!!! The code is not doing what the docstring claim. - KL Apr 2014

Parameters iarray — A list of AstroData instances for which a correlation dictionary will be con-
structed.

Returns a list of tuples containing correlated extensions from the arguments.
Return type list of tuples

The correlate (..) function is a module-level helper function which returns a list of tuples of Single
Extension AstroData instances which associate extensions from each listed AstroData object, to identically
named extensions among the rest of the input array. The correlate (..) function accepts a variable number
of arguments, all of which should be Ast roData instances.

The function returns a structured dictionary of dictionaries of lists of Ast roData objects. For example, given
three inputs, ad, bd and cd, all with three “SCI”, “VAR” and “DQ” extensions. Given adlist = [ad, bd, cd],
then corstruct = correlate(adlist) will return to corstruct a dictionary first keyed by the EXTNAME, then keyed
by tuple. The contents (e.g. of corstruct/”SCI”]J[1]) are just a list of AstroData instances each containing a
header-data unit from ad, bd, and cd respectively.

Info to appear in the list, all the given arguments must have an extension with the given
(EXTNAME,EXTVER) for that tuple.

3.7.2 prep_output(..)

astrodata.data.prep_output (input_array=None, name=None, clobber=False)

Parameters

22 Chapter 3. AstroData Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

* input_array (list of AstroData Instances) — The input array from which propagated content
(such as the source PHU) will be taken. Note: the zero-th element in the list is used as the
reference dataset for PHU or other items which require a particular reference.

* name — File name to use for returned AstroData, optional.

* clobber (bool) — By default prep_output (. .) checks to see if a file of the given name
already exists, and will raise an exception if found. Set clobber to True to override this
behavior and potentially overwrite the extant file. The dataset on disk will not be overwritten
as a direct result of prep_output, which only prepares the object in memory, but will occur
when the AstroData object returned is written (i.e. ad.write (..))).

Returns an AstroData instance initialized with appropriate header-data units such as the PHU,
Standard Gemini headers and with type-specific associated data-header units such as binary table
Mask Definition tables (MDF).

Return type AstroData
Info File will not have been written to disk by prep_output (..).

The prep_output (. .) function creates a new AstroData object ready for appending output information
(e.g. ad.append (. .)). While you can also create an empty Ast roData object by giving no arguments to
the Ast roData constructor (i.e. ad = AstroData ()), prep_output (..) exists for the common case
where a new dataset object is intended as the output of some processing on a list of source datasets, and some
information from the source inputs must be propagated.

The prep_output (..) function makes use of this knowledge to ensure the file meets standards in what is
considered a complete output file given such a combination. In the future this function can make use of dataset
history and structure definitions in the ADCONFIG configuration space. As prep_output improves, scripts
and primitives that use it will benefit in a forward compatible way, in that their output datasets will benefit
from more automatic propagation, validations, and data flow control, such as the emergence of history database
propagation.

Presently, it already provides the following:
*Ensures that all standard headers are in place in the new file, using the configuration .
*Copy the PHU of the reference image (input_array[0]).

*Propagate associated information such as the MDF in the case of a MOS observation, configurable by the
Astrodata Structures system.

3.7.3 re_header_keys(..)

astrodata.data.re_header_ keys (rekey, header)
Parameters
* rekey (string) — a regular expression to match keys in header

* header (pyfits.Header) - a pyfits.Header object as returned by
ad[("SCI",1)] .header

Returns a list of matching keys
Return type list of strings

This utility function returns a list of keys from the input header that match the regular expression.

3.7. Module Level Functions 23

Astrodata Package Programmer’s Manual, Release 1.0beta

24 Chapter 3. AstroData Class Reference

CHAPTER
FOUR

REDUCTIONCONTEXT CLASS
REFERENCE

The following is information about the ReductionContext class. When writing primitives the reduction context is
passed into the primitive as the sole argument (generally named rc by Gemini conventions and in addition to the
self argument). This object is used by the primitive to both get inputs and store outputs, as well as to communicate
with subsystems like the calibration queries system or list keeping for stacking.

4.1 Parameter and Dictionary Features

4.1.1 The “in” operator: contains(..)

ReductionContext.__contains__ (thing)
Parameters thing (s7r) — A key to check for presence in the Reduction Context

The __contains___ function implements the Python in operator. The ReductionContext is a subclass
of a dict, but it also has a secondary dict of “local parameters” which are available to the current primitive
only, which are also tested by the __contains__ (..) member. These parameters will generally be those
passed in as arguments to a primitive call from a recipe and from the parameter set.

4.2 Dataset Streams: Input and Output Datasets

4.2.1 get_inputs(..)

ReductionContext .get_inputs (style=None)

Parameters style (string) — Controls the type of return value. Supported values are “AD” and “FN”
for AstroData and st ring filenames respectively.

Returns a list of Ast roData instances or st ring filenames
Return type list

get_inputs (..) getsthe current input datasets from the current stream. You cannot choose the stream, use
get_stream(..) for that. To report modified datasets back to the stream use report_output (..).

25

Astrodata Package Programmer’s Manual, Release 1.0beta

4.2.2 get_inputs_as_astrodata(..)
ReductionContext.get_inputs_as_astrodata ()
This function is equivalent to:

get_inputs(style="AD”)

4.2.3 get_inputs_as_filenames(..)
ReductionContext.get_inputs_as_filenames ()
This function is equivalent for:

get_inputs(style="FN")

4.2.4 get_stream(..)

ReductionContext .get_stream (stream="main’, empty=False, style=None)
Parameters

 stream (str) — A string name for the stream in question. The default stream is referred to
as “main”. Do not reset the stream argument if you simply want to use the default/”main”
stream.

* empty (bool) — Controls if the stream is emptied, defaults to “False”.

* style — controls the type of output. “AD” directs the function to return a list of AstroData
instances. “FN” directs it to return a list of filenames. If left blank or set to None, the
AstroDataRecord structures used by the Reduction Context will be returned.

Returns alist of AstroDataRecord objects, Ast roData objects or filenames.
Return type list

get_stream returns a list of AstroData instances in the specified stream.

4.2.5 get_reference_image(..)

ReductionContext .get_reference_image ()
This function returns the current reference image. At the moment this is simply the first dataset in the current
inputs. However, use of this function allows us to evolve our concept of reference image for more complicated
cases where the choice of a “reference” image may need to be different (e.g. require some data analysis to
determine).

4.2.6 report_outputf(..)

ReductionContext .report_output (input, stream=None, load=True)
Parameters

* input (str; AstroData instance, or list) — The inputs to report (add to the given or current
stream). Input can be a string (filename), an AstroData instance, or a list of strings and/or
AstroData instances. Each individual dataset is wrapped in an AstroDataRecord and stored
in the current stream.

26 Chapter 4. ReductionContext Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

* stream (str) — If not specified the current stream is used. When specified the named stream
is created if necessary.

* load — A boolean (default: True) which specifies whether string arguments (pathnames)
should be loaded into AstroData instances or if it should be kept as a filename, unloaded.
This argument has no effect when “report” Ast roData instances already in memory.

This function, along with get_inputs (. .) allows a primitive to interact with the datastream in which it was
invoked (or access other streams).

4.2.7 switch_stream(..)

ReductionContext .switch_stream (switch_to=None)

Parameters switch_to (str) — The string name of the stream to switch to. The named stream must
already exist.

Note This function is used by the infrastructure (in an application such as reduce and in the Re-
ductionContext) to switch the stream being used. Reported output then goes to the specified
stream.

4.3 Calibrations

4.3.1 get_cal(..)

ReductionContext .get_cal (data, caltype)
Retrieve calibration.

Parameters
* data (string or AstroData instance) — File for which calibration must be retrieved.
* caltype (string) — The type of calibration (ex.’bias’, ‘flat’).

Returns The URI of the currently stored calibration or None.

Return type string or None

4.3.2 rg_cal(..)

ReductionContext.rq cal (caltype, inputs=None, source="all’)
Create calibration requests based on raw inputs.

Parameters
* caltype (str) — The type of calibration. For example, ‘bias’ and ‘flat’.

e inputs (list of AstroData instances) — The datasets for which to find calibrations, if not
present or None current “inputs” are used.

* source — Directs what calibration service to contact, for future compatibility, currently only
“all” is supported.

4.3. Calibrations 27

Astrodata Package Programmer’s Manual, Release 1.0beta

4.4 Stacking

4.4.1 rq_stack_get(..)

ReductionContext.rq stack_get (purpose=None)

Parameters purpose (string) — The purpose is a string prepended to the stackID used to identify the
list (see get_1list (. .)). The default is None and will behave like an empty string. Examples
of purpose strings include: ‘forStack’, ‘forSky’.

The stackID (see IDFactory module) is used to identify the list. The first input in the rc.inputs list is used as the
reference image to generate the stackID portion of the list identifier.

The stackID function in IDFactory is meant to produce identical stacking identifiers for different images which
can/should be stacked together, e.g. based on program ID and/or other details. Again, see IDFactory for the
particular algorithm in use.

Note a versioning system is latent within the code, and is added to the id to allow adaptation in the
future if identifer construction methods change.

4.4.2 rq_stack_update(..)

ReductionContext .rq stack_update (purpose=None)

Parameters purpose (str) — The purpose argument is a string prefixed to the generated stackID.
This allows two images which would produce identical stackIDs to go in different lists, i.e. such
as a fringe frame which might be prepended with “fringe” as the purpose.

This function creates requests to update a stack list with the files in the current rc.inputs list. Each will go in a
stack based on its own stackID (prepended with “purpose”).

Note this function places a message on an outbound message queue which will not be sent until the
next “yield”, allowing the ReductionObject command clause to execute.

4.5 Lists

4.5.1 list_append(..)

ReductionContext.list_append (id, files, cachefile=None)
Parameters
* id (string) — A string that identifies to which list to append the filenames.
* files (list of strings) — A list of filenames to add to the list.

* cachefile (string) — Filename to use to store the list. There are no restrictions on the name
used.

The caller is expected to supply cachefile, which in principle a value of “None” could mean the “default
cachefile” this is not supported by the adcc as of yet. The desired behavior is for reduce instances running in the
same directory to cooperate, and those running in separate directories be kept separate, and this is implemented
by providing an argument for cachefile which is in a generated subdirectory (hidden) based on the startup
directory for the reduce process.

The adcc will negotiate all contention and race conditions regarding multiple applications manipulating a list
simultaneously in separate process.

28 Chapter 4. ReductionContext Class Reference

Astrodata Package Programmer’s Manual, Release 1.0beta

4.5.2 get_list(..)

ReductionContext.get_list (id)

Parameters id (szr) — Lists are associated with arbitrary identifiers, passed as strings. See
IDFactory for IDs built from standard ast rodata characteristics.

The list functionality allows storing dataset names in a list which is shared by all instances of reduce running in
a given directory. The list is kept by an adcc instance in charge of that sub-directory. The get_list (..)
function retrieves a list that has already been requested via rg_stack_get (. .) which initiates the interpro-
cess request.

This function does not block, and if the stack was not requested prior to a yeild, prior to this call, then None or
an out of date version of this list will be retrieved.

Note “get stack” calls get_list but takes a “purpose” to which it adds a stackID as a suffix to the list
identifier.

4.6 Utility

4.6.1 prepend_names(..)

ReductionContext .prepend_names (prepend, current_dir=True, filepaths=None)
Parameters
* prepend (string) — The string to be put at the front of the file.

* current_dir (boolean) — Used if the filename (astrodata filename) is in the current working
directory.

* filepaths — If present, these file paths will be modified, otherwise the current inputs are
modified.

Returns List of new prepended paths.
Return type list

Prepends a prefix string to either the inputs or the given list of filenames.

4.6.2 run(..)

ReductionContext . run (stepname)

Parameters stepname — The primitive or recipe name to run. Note: this is

actually compiled as a recipe. Proxy recipe names may appear in the logs.

The run (. .) function allows a primitive to use the reduction context to execute another recipe or primitive.

4.6. Utility 29

Astrodata Package Programmer’s Manual, Release 1.0beta

30 Chapter 4. ReductionContext Class Reference

CHAPTER
FIVE

ASTRODATA CONFIGURATION
PACKAGE DEVELOPMENT GUIDE

5.1 Elements

Instrument-mode specific behaviors available through the Ast roDat a class are not implemented in the ast rodata
package itself, but are instead loaded from configuration packages. In the case of Gemini data the configuration
package is a directory named astrodata_Gemini. The path to this configuration package is included in the
PYTHONPATH, or in either of the two astrodata environment variables, RECIPEPATH or ADCONFIGPATH.

The ast rodata package searches for all directories named ast rodata_<anything> in these environment vari-
ables. Though the configurations contain executable python, it is not meant to be imported as a regular python module
but is loaded by the astrodata package.

5.1.1 The General Configuration Creation Process

1. Define a tree of Ast roDataTypes identifying types of your data.

2. Create “descriptor” functions which calculate a particular metadata value for nodes of the AstroDataType
tree defined, such as gain or filter_name.

3. Write Python member functions bundled into PrimitivesSet classes, which specifically understand your
dataset.

4. Assemble primitives into sequential lists, which we call processing “recipes”.

Initially you will develop classifications for your data, and functions which will provide standard information, allowing
you to use AstroData, e.g. in processing scripts. Then you will put your processing scripts in the form of “primitives”
and collect these in “recipes” so they can be used for automated data reduction.

5.1.2 Configuration Elements Which Have To Be Developed

1. AstroData Types identify classifications of MEF datasets to which other features can be assigned. Types have
requirements which must hold for an identified dataset and also information about the place of the type in an
overall type hierarchy (e.g. The GMOS type is the parent of GMOS_IMAGE).

2. AstroData Descriptors are functions which calculate a particular type of metadata which is expected to be
available for all datasets throughout the type hierarchy. Examples from the Gemini configuration package are
gain and filtername. Different instruments store information about the gain in unique headers, and may
even require lookup tables not located in the dataset. Descriptors are type-appropriate functions assigned at
runtime to the astrodata instance, allowing type-specific implementations to manage these peculiarities.

31

Astrodata Package Programmer’s Manual, Release 1.0beta

3. Primitives are dataset transformations meant to run in the Recipe System. Primitives are implemented as python
generator functions in sets of primitives that apply to a common AstroDataType.

4. Recipes are lists of primitives stored in plain text which can be executed by the AstroData Recipe System. While
primitives work on the Reduction Context explicitly, the reduction context is implicit in recipes so that
recipes can arguably be considered to contain “scientifically meaningful” steps with no “software artifacts”.

5.2 Creating A Configuration Package

5.2.1 Preparation

For this work it is required that the astrodata package already be installed and functional (eg. commands like
reduce and typewalk should be available). To help follow along, it is recommended to have the Gemini astrodata
configuration package installed too (astrodata_Gemini). Note that if working straight from a SVN checkout one
will require that the astrodata/scripts package directory be added to the PATH.

5.2.2 Clone the Sample Package

The easiest, and recommended way to start a new configuration package is by copying the astrodata_Sample
package. The sample configuration package is located in astrodata/sample/astrodata_Sample. Copy
this directory to a development workspace as in the following example, where <ad_install_dir> should be the
directory in which the ast rodata package is installed:

cd /home/username
mkdir workspace
cd workspace

cp -r <ad_install_dir>/astrodata/samples/astrodata_Sample

Note that <ad_install_dir> should already be on the PYTHONPATH.

The name of the destination can, of course, be other than astrodata_Sample, and it can be changed later
as well. For a real package it must be changed, and though not strictly necessary, the ADCONFIG_Sample
and RECIPES_Sample should have “Sample” changed to something unique which matches the parent
astrodata_<whatever> directory. So long as the ADCONFIG_ and RECIPES_ portion of the name is present
no other aspect of the configuration will have to change. However, every configuration package wherever on the path
must have a unique name.

You must also ensure that the new directory containing astrodata_Sample is in either ADCONFIGPATH or
RECIPEPATH, or alternately for convenience (i.e. when installing packages via setup.py) in the PYTHONPATH. If
you are following the above steps, you are in the directory to which astrodata_Sample was copied. Add this
directory to the RECIPEPATH so your copy of astrodata_Sample can be found:

export RECIPEPATH=S$ (pwd) : SRECIPEPATH

You can now test that astrodata_Sample is being discovered by the astrodata package by running a tool from
the astrodata/scripts directory which should have been installed to system bin directories by the setup.py
process.

Assuming that you are working in the test data directory, with a subdirectory named source_data into which you
have copied at least one fits file. For these examples, we assume for convienience your file is named test . fits:

cd ~
mkdir test_data
cd test_data

32 Chapter 5. AstroData Configuration Package Development Guide

Astrodata Package Programmer’s Manual, Release 1.0beta

mkdir source_data
cp <somepath>/test.fits source_data

We’ll assume you are working in this directory for the rest of the example. To see if the types from
astrodata_Sample are discovered, type:

typewalk -c

This will generate output like the following:

directory: . (/home/dpd/test_data)
oL S=] R I ol = T (CAL) (GEMINI) (GEMINI_NORTH) (GMOS)
................................... (GMOS_CAL) (GMOS_IMAGE)
................................... (GMOS_IMAGE_FLAT) (GMOS_N) (GMOS_RAW)
................................... (IMAGE) (MARKED) (OBSERVED) (RAW)
................................... (UNPREPARED)

A line should show up for test . fits and any other fits files in the current directory and any subdirectory listing
the AstroData types which apply to the dataset. The list will contain some Gemini types, such as RAW and UN-
PREPARED, and if the data in question is Gemini data, types associated with the instrument-mode and processing
status.

However, it should also include two types from the sample configuration, UNMARKED (or possibly MARKED if the
dataset has been manipulated by the Sample package previously), and OBSERVED.

5.3 Creating An AstroDataType

5.3.1 Overview

AstroData types are defined in Python classes located in either of two path locations in the configuration package:

* “‘astrodata_Sample/classification/types' - for typological types
* ‘‘astrodata_Sample/classification/status'' - for types related to processing status.

The type definition syntax is equivalent in both cases, the distinction is only for organization between two sorts of
dataset classfication:

1. Classifications that characterize instrument-modes or generic types of dataset.
2. Classifications that characterize the processing state of data.

For example, from the astrodata_Gemini configuration, the RAW and PREPARED are “processing types” in
astrodata_Gemini/status/. .., whereas NICI, GMOS and GMOS_IMAGE are “typological types” located in
the astrodata_Gemini/status/. .. subdirectory directory.

5.3.2 The Class Definition Line by Line

To inspect the types in the custom package change directory to ast rodata_Sample/classifications/status
and get a directory listing:

cd <base_path>/astrodata_Sample/classifications/status
cat adtype.UNMARKED.py

The contents of the file should be as below:

5.3. Creating An AstroDataType 33

Astrodata Package Programmer’s Manual, Release 1.0beta

class UNMARKED (DataClassification) :
name="UNMARKED"

usage = "Processing Type for data not yet ’'marked’."
parent = "OBSERVED"
requirement = PHU ({" {prohibit }THEMARK":" .x"})

newtypes.append (UNMARKED ())

Note that type source files are read into memory and executed in a prepared environment. Thus there is no need to
import the DataClassification class from the particular astrodata module, this standard base class is already in
scope.

The two elements are the class itself and the newt ypes .append (UNMARKED ()) line which instantiates an object
of the class and appends it to a list that the ClassificationLibrary can use to inspect datasets. The ClassificationLibrary
uses the newtypes list to recieve types defined in the module, allowing multiple types to be added to this list in a
single type module if desired. At Gemini we have decided to have just one type definition per python type file.

1. class UNMARKED (DataClassification): By convention, we name the class identically to the chosen
string name, in this case UNMARKED, however this is not required by the system.

2. name="UNMARKED": The classification name property stores the string used by the system to identify the
type. NOTE: when using type functionality, the user never sees the classification object, and deals with types as
strings.

3. usage="Processing Type for data not yet ’marked’.": Thisis used for automatically gen-
erated documentation.

4. parent="OBSERVED": This is the type name of a parent class. Note, the type need not also be recognizes as
the parent type. The parent member is used to determine overriding assignments in the type tree such that, of
course, leaf nodes override root nodes, e.g. for descriptor calculator and primitive set assignments.

5. requirement = PHU({"{prohibit}THEMARK":’ .x’}): The requirement member uses require-
ment classes (see below) to define the given type. In this case, this is a PHU check to ensure that the header
keyword “THEMARK? is not set at all in the PHU. The string ‘.*’ is a regular expression.

6. newtypes.append (UNMARKED ()) : This line appends an object instance of the new class to a pre-defined
newtypes array variable. Note, this name is the class name from line 1, not the type name, though by
convention in Gemini AstroData Types we use the type name as the class name.

5.3.3 The Requirement Classes
The requirement member of a type classification is intended to be declared with an expression built from requirement

classes. Again, the type definition is evaluated in a controlled environment and these classes, as well as aliases for
convienience, are already in scope.

Concrete Requirements

Concrete Requirements are those that make actual physical checks of dataset characteristics.

Requirement Type Alias Description
ClassReq ISCLASS | For ensuring this type is also some other classification
PhuReq PHU Checks a PHU key/value header against a regular expression.

Object Oriented design enables us to extend requirement class ability and/or create new requirements. Examples: the
current PHU requirement checks values only against regular expressions, it could be expanded to make numerical
comparisons (e.g. to have a dataset type dependent on seeing thresholds). Another example that we anticipate needing
is a requirement class that checks header values in extensions.

34 Chapter 5. AstroData Configuration Package Development Guide

Astrodata Package Programmer’s Manual, Release 1.0beta

Currently all type checking resolves to PHU checks, see below for a description of the PHU requirement object.

ISCLASS(other_class_name)

The ISCLASS requirement accepts a string name and will cause the classification to check if the other type applies.
Circular definitions are possible and the configuration author must ensure such do not exist.

ISCLASS example:

class GMOS (DataClassification):
name="GMOS"
usage = "'’
Applies to all data from either GMOS-North or GMOS-South instruments in any mode.

rrr

parent = "GEMINI"

requirement = ISCLASS ("GMOS_N") | ISCLASS("GMOS_S")
equivalent to...

requirement = OR(

ClassReq ("GMOS_N"),

ClassReq ("GMOS_S")

)

newtypes.append (GMOS())

Since there are in fact two GMOS instruments at Gemini, one in Hawaii, one in Chile, the GMOS type really means
checking that one of these two instruments was used.

“l”

Note: This is also an example of use of the OR requirement, and specifically a convenience feature allowing the
symbol to be used for pair-wise or-ing. The included comment shows another form using the OR object constructor
which allows more than two operands to be listed.

PHU(keyname=re_val, [keyname2=re_val2 [...]])

The PHU requirement accepts any number of arguments. Each argument name is used as the PHU key name, and the
value is a regular expression against which the header value will be compared.

An example:

class GMOS_NODANDSHUFFLE (DataClassification):
name="GMOS_NODANDSHUFFLE"
usage = "Applies to data from a GMOS instrument in Nod-And-Shuffle mode"
parent = "GMOS"
requirement = PHU(NODPIX='.x")

newtypes.append (GMOS_NODANDSHUFFLE ())

It is also possible to prohibit a match, and to use regular expressions for key matching using a special syntax for the
key name. This is done by prepending an instruction to the key name, but also requires passing arguments to the
PHU object constructor in a different way. For example the following requirement checks to ensure that the PHU key
MASKNAME does not match "IFU*":

PHU ({" {prohibit }MASKNAME": "IFUx"})

Note that in this case the arguments are passed to the PHU object constructor as a dictionary. The keys in the dictionary
are used to match PHU keys, and the values are regular expressions which will be compared to PHU values.

5.3. Creating An AstroDataType 35

Astrodata Package Programmer’s Manual, Release 1.0beta

Generally, Python helps instantiating the PHU object by turning the constructor parameter names and their settings
into the keys and values of the dictionary it uses internally. However, Python does not like special characters like “{”
in argument names, so to use the extended key syntax requires passing the dictionary.

To use regular expressions in key names (which is also considered dangerous and prone to inefficiency), use the
following syntax:

class PREPARED (DataClassification):

name="PREPARED"

usage = 'Applies to all "prepared" data.’
parent = "UNPREPARED"

requirement = PHU({’/ {re}.x?PREPARE’ : ".x?2" })

newtypes.append (PREPARED ())

Due to our legacy reduction software conventions, Gemini datasets which have been run through the system will have
a keyword of the sort “<x>PREPARE” with a value set to a time stamp. The need for caution is due to, one, efficiency,
since the classification must cycle through all headers to see if the regular expression matches, and two, this technique
is prone to a name collision, i.e. in our example above... if a PHU happens to have a key matching " +PREPARE" for
some other reason than having been processed by the Gemini Package.

Please use this feature with caution.
Logical Requirement Classes

The logical requirement classes use OO design to behave like requirement operators, returning true or false based on
a combination of requirements given as arguments.

Requirement Type Alias | Description

AndReq AND For comparing two other requirements with a logical and
NotReq NOT For negating the truth value of another requirement
OrReq OR For comparing two other requirements with a logical or

AND(<requirement>,<requirements [, <requirements [, <requirement>] ..])

The AND requirement accepts other requirements as arguments. At least two arguments are needed for the AND to
be sensible, but if more are present they are also checked for truth value.

It is possible also to use the “&” operator as a logical “and”:

requirement = AND (PHU ("keyl", "vall"), PHU("key2", "val2"))

...Is equivalent to:

requirement = PHU("keyl", "vall") & PHU("key2", "val2")

NOT(<requirements>)

The NOT requirement accepts a single other requirement as arguments. “NOT” is used to negate some requirement.
For example at Gemini we do not view a GMOS_BIAS as a GMOS_IMAGE, but it does satisfy the requirements
of GMOS_IMAGE. The need for a separate type is due to the fact that GMOS_IMAGE and GMOS_BIAS require
different automated reduction (e.g. in a pipeline deployment). To accomplish this we add a NOT requirement to
GMOS_IMAGE:

36 Chapter 5. AstroData Configuration Package Development Guide

Astrodata Package Programmer’s Manual, Release 1.0beta

class GMOS IMAGE (DataClassification):
name="GMOS_IMAGE"

usage =
Applies to all imaging datasets from the GMOS instruments

parent = "GMOS"
requirement = AND ([ISCLASS ("GMOS"™),
PHU (GRATING="MIRROR"),
NOT (ISCLASS ("GMOS_BIAS")) 1)

newtypes.append (GMOS_IMAGE ())

OR(<requirement>,<requirements [, <requirements [, <requirements] ..])

The OR requirement accepts other requirements as arguments. At least two arguments are needed for the OR to be
sensible, but if more are present they are also checked for truth value.

“l”

It is possible also to use the “I” operator as a logical “or”:

requirement = OR(PHU("keyl", "vall"), PHU("key2", "val2"))

...1s equivalent to:

requirement = PHU("keyl", "vall") | PHU("key2", "val2")

5.4 Creating a New Descriptor

The Descriptor implementations are defined in the astrodata_Sample/ADCONFIG_Sample/descriptors
directory tree. A descriptor configuration requires the following elements:

1. There must be a “Calculator” object in which the descriptor function must be defined (as a method).

2. The Calculator class must appear in a “calculator index”, which are any files in the descriptors directory
tree named calculatorIndex.<whatever>.py where <whatever> can be any unique name.

3. The descriptor must be listed in the DescriptorsList.py file.

5.4.1 The Calculator Class

The Calculator Class in the Sample package is, for the OBSERVED type, in the file
OBSERVED_Descriptors.py. That file is located in the descriptors subdirectory of the
ADCONFIG_Sample of the astrodata_Sample package. It contains just one example descriptor func-
tion, observatory which relies on the standard MEF PHU key, OBSERVAT:

class OBSERVED_DescriptorCalc:
def observatory(self, dataset, =xxargs):
return dataset.get_phu_key_value ("OBSERVAT")

In order for this function to be called for the right type of data, this class must appear in a “calculator index”.

5.4. Creating a New Descriptor 37

Astrodata Package Programmer’s Manual, Release 1.0beta

5.4.2 The Calculator Index

The Calculator Index for astrodata_Sample is located in the file, calculatorIndex.Sample.py, in the
descriptors subdirectory of ADCONFIG_Sample inthe astrodata_Sample configuration package.

Here is the source:

calculatorIndex = {
"OBSERVED" : "OBSERVED_Descriptors.OBSERVED_DescriptorCalc ()",
}

Note, the sample index also contains detailed instructions about the format but for our purposes the index should be
clear enough. The dictionary key is the string name of a defined AstroData Type, and the value is the class name,
including the module it is defined in. The system will parse this name and import the OBSERVED_Descriptors
module, then store the class in a calculator dictionary.

5.4.3 The DescriptorList.py

The DescriptorList.py file contains a list of descriptors definitions. The entries declared must at least declare
the name of the new descriptor function. The infrastructure will use these names to create a bridge between AstroData
instances and the type-specific descriptor functions.

Adding a New Descriptor to the configuration involves:
1. Adding a “DescriptorDescriptor” to the DescriptorList.py file.

2. Adding the descriptor function to the appropriate Descriptor Calculator class.

The DescriptorList.py File

The contents of DescriptorList.py is alist of “DD” object constructors, as follows from the astrodata_Sample
package:

[

DD ("observatory"),

]

To add a descriptor named “telescope” we’d add the following line to the DescriptorList.py file:

DD ("telescope")

This tells the infrastructure the name of the descriptor, and in more complicated cases can provide other descriptor
metadata to the infrastructure. The final file would look as follows:

[
DD ("observatory"),
DD ("telescope")
1

Adding the Descriptor Function to the CalculatorClass

To add the descriptor once the descriptor is present in the DescriptorList .py one merely needs to add a func-
tion to the appropriate DescriptorCalculator class. The contents of OBSERVED_Descriptors.py module in the
astrodata_Sample configuration is:

38 Chapter 5. AstroData Configuration Package Development Guide

Astrodata Package Programmer’s Manual, Release 1.0beta

class OBSERVED_DescriptorCalc:
def observatory(self, dataset, =*xargs):
return dataset.get_phu_key_value ("OBSERVAT")

To add the “telescope” descriptor means adding another function to this class:

def telescope(self, dataset, =*=xargs):
return dataset.get_phu_key_value ("TELESCOP")

All descriptors should have the same function signature, including self, a dataset argument and **args to
catch all named arguments. The latter is required by the infrastructure so that unexpected parameters can be sent to all
descriptor algorithms, some of which may be handled by the infrastructure on behalf of the descriptor function.

5.5 Creating Recipes and Primitive

Primitives are basic transformations. Since different dataset types will sometimes require different concrete imple-
mentations of code to perform the requested step, the primitive names are shared system-wide, with type-specific
implementations.

A “recipe” is a text file containing one primitive (or other recipe) per line. It is thus a sequential view of a reduction
or data analysis process. It contains no branching explicitly, but since primitives can be implemented for particular
dataset types, there is implicit branching based on dataset type.

5.5.1 Understanding Primitives

Primitives are bundled together in type-specific batches. Thus, for our Sample types of OBSERVED, MARKED, and
UNMARKED, each would have its own primitive set. Generally, any given dataset must have exactly one appropriate
primitive set per package, which is resolved through the parent member of the AstroDataType. Leaf node primitive
set assignments override parent assignments.

Which primitive set is to be loaded for a given type is specified in index files. Index files and primitive sets must appear
in astrodata_Sample/RECIPES_Sample, or any subdirectory of this directory. Any arrangement of files into
subdirectories below this directory is acceptable. However, by convention Gemini put all “primitive set” modules in
the primitives subdirectory and put only recipes in this top directory.

The astrodata package essentially flattens these directories; moving files around does not affect the configuration or
require changing the content of any files, with the exception that the primitive parameter file must appear in the same
location as the primitive set module itself.

Primitive Indices

The astrodata package recursing a RECIPES_XYZ directory will look at each filename, if it matches the primitive
index naming convention, primitivesIndex.<unique_name>.py, it will try to load the contents of that file
and add it to the internal primitive set index. Below is an example of a primitive index file which contributes to the
central index:

localPrimitiveIndex = {
"OBSERVED" : ("primitives_OBSERVED.py", "OBSERVEDPrimitives"),
"UNMARKED" : ("primitives_UNMARKED.py", "UNMARKEDPrimitives"),
"MARKED" : ("primitives_MARKED.py", "MARKEDPrimitives"),

}

5.5. Creating Recipes and Primitive 39

Astrodata Package Programmer’s Manual, Release 1.0beta

The dictionary in the file must be named “localPrimitivelndex”. The key is the type name and the value is a tuple
containing the primitives’ module basename and the name of the class inside the file, respectively, as strings. These
are given as strings because they are only evaluated into Python objects if needed.

There can be multiple primitive indices. As mentioned each index file merely updates a central index collected from
all installed packages. The index used in the end is the union of all indices.

Within the sample primitive set, primitives_OBSERVED.py, you will find something like the following:

from astrodata.ReductionObjects import PrimitiveSet

class OBSERVEDPrimitives (PrimitiveSet) :
astrotype = "OBSERVED"

def init (self, rc):
print "OBSERVEDPrimitives.init (rc)"
return

def typeSpecificPrimitive (self, rc):
print "OBSERVEDPrimitives.typeSpecificPrimitive ()"

def mark(self, rc):
for ad in rc.get_inputs_as_astrodatal() :
if ad.is_type ("MARKED") :
print "OBSERVEDPrimitives::mark (%$s) already marked" % ad.filename
else:
ad.phu_set_key_value ("THEMARK", "TRUE")
yield rc

def unmark (self, rc):
for ad in rc.get_inputs_as_astrodata() :
if ad.is_type ("UNMARKED") :
print "OBSERVEDPrimitives::unmark (%$s) not marked" % ad.filename
else:
ad.phu_set_key_value ("THEMARK", None)
yield rc

Adding another primitive is merely a matter of adding another function to this class. No other index needs to change
since it is the primitive set class itself, not the primitives, that are registered in the index. However, note that primitives
are implemented with “generator” functions. This type of functions is a standard Python feature. For purposes of
writing a primitive all you need to understand about generators is that instead of a‘‘return*‘ statement, you will use
yield. Like return statement the yield statement accepts a value, and as with “returning a value” a generator
“yields a value”. For primitives this value must be the reduction context passed in to the primitive.

A generator can have many yield statements. The yield gives temporary control to the infrastructure, and when the
infrastructure is done processing any outstanding duties, execution of the primitive resumes directly after the yield
statement. To the primitive author it is as if the yield is a pass statement, except that the infrastructure may process
requests made by the primitive prior to the yield, such as a calibration request.

5.5.2 Recipes

Recipes should appear in the RECIPES_<XYZ> subdirectory, and have the naming convention
recipe.<whatever>. A simple recipe using the sample primitives is:

showInputs (showTypes=True)
mark
typeSpecificPrimitive
showInputs (showTypes=True)

40 Chapter 5. AstroData Configuration Package Development Guide

Astrodata Package Programmer’s Manual, Release 1.0beta

unmark
typeSpecificPrimitive
showInputs (showTypes=True)

With this file, named recipe .markUnmark, in the RECIPIES_Sample directory in your test data directory you
can execute this recipe with the reduce command:

reduce -r markUnmark test.fits

The showInputs primitive is a standard primitive, and the argument showTypes tells the primitive to display type
information so we can see the affect of the sample primitives. The t ypeSpecificPrimitive is asample primitive
with different implementations for “MARKED” and “UNMARKED”, which prints a message to demonstrate which
implementation has been executed.

5.5. Creating Recipes and Primitive 41

Astrodata Package Programmer’s Manual, Release 1.0beta

42 Chapter 5. AstroData Configuration Package Development Guide

Symbols

__contains__() (astrodata.RecipeManager.ReductionContext

method), 25
__getitem__ () (astrodata.data.AstroData method), 19
__init__ () (astrodata.data.AstroData method), 12

A

append() (astrodata.data.AstroData method), 13
AstroData (class in astrodata.data), 11

C

close() (astrodata.data.AstroData method), 13
correlate() (in module astrodata.data), 22
count_exts() (astrodata.data.AstroData method), 19

D

data (astrodata.data.AstroData attribute), 20

E

ext_get_key_value() (astrodata.data.AstroData method),
18

ext_set_key_value() (astrodata.data.AstroData method),
18

G

get_cal() (astrodata.RecipeManager.ReductionContext
method), 27

get_data() (astrodata.data.AstroData method), 20

get_header() (astrodata.data.AstroData method), 21

get_inputs() (astrodata.RecipeManager.ReductionContext
method), 25

get_inputs_as_astrodata() (astro-
data.RecipeManager.ReductionContext
method), 26

get_inputs_as_filenames() (astro-
data.RecipeManager.ReductionContext
method), 26

get_key_value() (astrodata.data. AstroData method), 17

get_list() (astrodata.RecipeManager.ReductionContext
method), 29

INDEX

get_reference_image() (astro-

data.RecipeManager.ReductionContext

method), 26

get_status() (astrodata.data.AstroData method), 15

get_stream() (astrodata.RecipeManager.ReductionContext
method), 26

get_types() (astrodata.data.AstroData method), 15

get_typology() (astrodata.data. AstroData method), 16

H

header (astrodata.data.AstroData attribute), 21

info() (astrodata.data.AstroData method), 14
infostr() (astrodata.data.AstroData method), 14
insert() (astrodata.data. AstroData method), 13
is_type() (astrodata.data.AstroData method), 15

L

list_append() (astrodata.RecipeManager.ReductionContext
method), 28

P

phu_get_key_value() (astrodata.data.AstroData method),
16

phu_set_key_value() (astrodata.data.AstroData method),
17

prep_output() (in module astrodata.data), 22

prepend_names() (astro-
data.RecipeManager.ReductionContext
method), 29

R

re_header_keys() (in module astrodata.data), 23

rename_ext() (astrodata.data.AstroData method), 22

report_output() (astrodata.RecipeManager.ReductionContext
method), 26

rg_cal() (astrodata.RecipeManager.ReductionContext
method), 27

rq_stack_get() (astrodata.RecipeManager.ReductionContext
method), 28

43

Astrodata Package Programmer’s Manual, Release 1.0beta

rq_stack_update() (astro-
data.RecipeManager.ReductionContext
method), 28

run() (astrodata.RecipeManager.ReductionContext
method), 29

S

set_data() (astrodata.data.AstroData method), 20
set_header() (astrodata.data. AstroData method), 21
set_key_value() (astrodata.data.AstroData method), 17

switch_stream() (astro-
data.RecipeManager.ReductionContext
method), 27

W

write() (astrodata.data.AstroData method), 14

44

Index

	Introduction
	Document Brief
	Revision History
	Abbreviations Table
	Intended Audience
	Document Structure

	Concepts
	Background
	Dataset Abstraction
	Meta-Data

	AstroData Lexicon
	The Astrodata Lexicon and Configurations

	Astrodata Type
	Astrodata Descriptors
	RecipeSystem
	Recipes and Primitives
	Zero Recipe System Overhead for AstroData-only Users

	Recipe System Primitives
	Primitives
	Some Benefits of the Primitive Concept
	Natural Emergence of Reusable Primitives
	Test Case at Gemini Observatory: Refactoring Python Scripts into Recipes and Primitives

	Recipes calling Recipes

	AstroData Class Reference
	AstroData Class
	Basic Functions
	AstroData Constructor
	append(..)
	close(..)
	insert(..)
	info(..)
	infostr(..)
	write(..)

	Type Information
	Header Manipulations
	Set/Get PHU Headers
	Set/Get Single-HDU Headers
	Set/Get Multiple-HDU Headers

	Iteration and Subdata
	Overview
	Using Slices and ``Subdata''

	count_exts(..)
	The [] Operator

	Single HDU AstroData Attributes
	data attribute
	header attribute
	Renaming an Extension

	Module Level Functions
	correlate(..)
	prep_output(..)
	re_header_keys(..)

	ReductionContext Class Reference
	Parameter and Dictionary Features
	The ``in'' operator: contains(..)

	Dataset Streams: Input and Output Datasets
	get_inputs(..)
	get_inputs_as_astrodata(..)
	get_inputs_as_filenames(..)
	get_stream(..)
	get_reference_image(..)
	report_output(..)
	switch_stream(..)

	Calibrations
	get_cal(..)
	rq_cal(..)

	Stacking
	rq_stack_get(..)
	rq_stack_update(..)

	Lists
	list_append(..)
	get_list(..)

	Utility
	prepend_names(..)
	run(..)

	AstroData Configuration Package Development Guide
	Elements
	The General Configuration Creation Process
	Configuration Elements Which Have To Be Developed

	Creating A Configuration Package
	Preparation
	Clone the Sample Package

	Creating An AstroDataType
	Overview
	The Class Definition Line by Line
	The Requirement Classes
	Concrete Requirements
	ISCLASS(other_class_name)
	PHU(keyname=re_val, [keyname2=re_val2 [...]])

	Logical Requirement Classes
	AND(<requirement>,<requirement> [, <requirement> [, <requirement>] ..])
	NOT(<requirement>)
	OR(<requirement>,<requirement> [, <requirement> [, <requirement>] ..])

	Creating a New Descriptor
	The Calculator Class
	The Calculator Index
	The DescriptorList.py
	The DescriptorList.py File
	Adding the Descriptor Function to the CalculatorClass

	Creating Recipes and Primitive
	Understanding Primitives
	Primitive Indices

	Recipes

	Index

