AstroData APl Documentation
Release X1

Kenneth Anderson

November 01, 2014

CONTENTS

1 AstroData API, Methods and Properties 1

1.1 Class AstroData 0 e e e e e e e e e 1
2 Indices and tables 9
Python Module Index 11

Index 13

CHAPTER
ONE

ASTRODATA API, METHODS AND PROPERTIES

1.1 Class AstroData

class astrodata.AstroData.AstroData (dataset=None, phu=None, header=None, data=None,

exts=None, extInsts=None, store=None, mode="readonly’)
The AstroData constructor constructs an in-memory representation of a dataset. If given a filename it uses pyfits

to open the dataset, reads the header and detects applicable types. Binary data, such as pixel data, is left on disk
until referenced.

Parameters

* dataset (string, AstroData, HDUList) — the dataset to load, either a filename (string) path or
URL, an ‘AstroData’ instance, or a ‘pyfits. HDUList’

* phu (pyfits.core.Header) — Primary Header Unit. This object is propagated to all astrodata
sub-data ImageHDUs. Special handling is made for header instances that are passed in as
this arg., where a phu will be created and the ‘.header’ will be assigned (ex. hdulist[0],
ad.phu, ad[0].hdulist[0], ad[’SCT’,1].hdulist[0], ad[0].phu, ad[’SCI’,1].phu, and all the pre-
vious with .header appended)

* header — extension header for images (eg. ‘hdulist[1].header’, ‘ad[0].hdulist[1].header’,
‘ad[’SCI’,1].hdulist[1].header’)

data (numpy.ndarray) — the image pixel array (eg. ‘hdulist[1].data’, ‘ad[0].hdulist[1].data’,
‘ad[’SCI’,1].hdulist[1].data’)

exts (list) — (advanced) a list of extension indexes in the parent ‘HDUList’ that this instance
should refer to, given integer or (EXTNAME, EXTVER) tuples specifying each extension
in the pyfits index space where the PHU is at index 0, the first data extension is at index 1,
and so on. Le. This is primarily intended for internal use when creating “sub-data”, which
are AstroData instances that represent a slice, or subset, of some other AstroData instance.

NOTE: if present, this option will override and obscure the <extInsts> argument, in other
word <extInsts> will be ignored.

Example of sub-data:
sci_subdata = ad[”’SCI”’]

The sub-data is created by passing “SCI” as an argument to the constructor. The
‘sci_subdata’ object would consist of its own ‘AstroData’ instance referring to it’s own
HDUList, but the HDUs in this list would still be shared (in memory) with the ‘ad’ ob-
ject, and appear in its HDUList as well.

extInsts (list of pyfits. HDU objects) — (advanced) A list of extensions this instance should
contain, specified as actual pyfits. HDU instances. NOTE: if the ‘exts’ argument is also set,
extInsts isignored.

AstroData APl Documentation, Release X1

* store (string) — directory where a copy of the original file will be stored. This is used in the
special case where the filename is an URL to a remote fits file. Otherwise it has no effect.

9

* mode (string) — IO access mode, same as pyfits mode (“readonly”, “update”, or “append”)
with one additional AstroData-specific mode, “new”. If the mode is “new”, and a filename
is provided, the constructor checks that the named file does not exist on disk, and if it does
not it creates an empty AstroData of that name but does not write it to disk. Such an
AstroData instance is ready to have HDUs appended, and to be written to disk at the
user’s command with ad.write ().

data
Property: The data property can only be used for single-HDU AstroData instances, such as those returned
during iteration. To set the data member, use ad.data = newdata, where newdata must be a numpy array.
To get the data member, use npdata = ad.data.

The “data” member returns appropriate HDU’s data member(s) specifically for the case in which the As-
troData instance has ONE HDU (in addition to the PHU). This allows a single-extension AstroData, such
as AstroData generates through iteration, to be used as though it simply is just the one extension. One is
dealing with single extension AstroData instances when iterating over the AstroData extensions and when
picking out an extension by integer or tuple indexing. Eg.,

for ad in dataset[SCI]:

ad is a single-HDU index ad.data = newdata

Returns data array associated with the single extension
Return type <ndarray>
Raises Errors.SingleHDUMemberExcept
descriptors
Property: Returns a dictionary of all registered metadata descriptor functions defined on the instance.
Eg.,
{descriptor_function_name : descriptor value (dv)}
Returns dict of descriptor functions
Return type <dict>

filename
Property: ‘filename’ is monitored so that the mode can be changed from ‘readonly’ when ‘filename’ is
changed.

header
Property: Returns the header member for Single-HDU AstroData instances.

The header property can only be used for single-HDU AstroData instances, such as those returned during
iteration. It is a property attribute which uses ger_header(..) and set_header(..) to access the header
member with the “=" syntax. To set the header member, use ad.header = newheader, where newheader
must be a pyfits.Header object. To get the header member, use hduheader = ad.header.

Returns header
Return type pyfits.Header
Raises Errors.SingleHDUMemberExcept

headers
Property: Returns header member(s) for all extension (except PHU).

2 Chapter 1. AstroData API, Methods and Properties

AstroData APl Documentation, Release X1

Returns list of pyfits.Header instances
Return type <list>

hdulist
Property: Returns a list of header-data units on the instance.

Returns The AstroData’s HDUList as returned by pyfits.open()
Return type <pyfits. HDUList>

phu
Property: Returns the instance’s primary HDU.

Returns The instance “phu”
Return type <PrimaryHDU>

types
Property: Returns the composite list of AstroData classifications. L.e. the instance’s qualified type and
status classifications.

Returns a list of types and status strings
Return type <list>

__getitem__ (ext)
AstroData instances behave as list-like objects and therefore pythonic slicing operations may be performed
on instances of this class. This method provides support for list slicing with the “[]” syntax. Slicing is used
to create AstroData objects associated with “subdata” of the parent AstroData object, that is, consisting of
an HDUList made up of some subset of the parent MEF.

E.g.,

datasetA = AstroData(dataset="datasetMEF.fits”)
datasetB = datasetA[’SCI’]

datasetC = datasetA[2]

datasetD = datasetA[(“SCI”,1)]

etc.

In this case, after the operations, datasetB is an Ast roDat a object associated with the same MEF, sharing
some of the the same actual HDUs in memory as datasetA. The object in datasetB will behave as
if the SCI extensions are its only members, and it does in fact have its own pyfits. HDUList. Note that
‘datasetA’ and ‘datasetB’ share the PHU and also the data structures of the HDUs they have in common,
so that a change to ‘datasetA[(‘SCI’,1)].data’ will change the ‘datasetB[(‘SCI’,1)].data’ member and vice
versa. They are in fact both references to the same numpy array in memory. The ‘HDUList’ is a different
list, however, that references common HDUs. If a subdata related ‘AstroData’ object is written to disk, the
resulting MEF will contain only the extensions in the subdata’s ‘HDUList’.

Note: Integer extensions start at O for the data-containing extensions, not at the PHU as with pyfits. This
is important: ‘ad[0]’ is the first content extension, in a traditional MEF perspective, the extension AFTER
the PHU; it is not the PHU! In Ast roData instances, the PHU is purely a header, and not counted as an
extension in the way that headers generally are not counted as their own elements in the array they contain
meta-data for. The PHU can be accessed via the ‘phu’ member.

Parameters ext (<str>, <int>, or <tuple>) — Integer index, an index tuple (EXTNAME,
EXTVER), or EXTNAME name. If an int or tuple, the single extension identified is wrapped
with an AstroData instance, and single-extension members of the AstroData object can be
used. A string ‘EXTNAME’ results in all extensions with the given EXTNAME wrapped by
the new instance.

1.1. Class AstroData 3

AstroData APl Documentation, Release X1

Returns AstroData instance associated with the subset of data.
Return type <AstroData>
Raises KeyError, IndexError

append (moredata=None, data=None, header=None, extname=None, extver=None,

auto_number=False, do_deepcopy=False)
Appends header-data units (HDUs) to the AstroData instance.

Parameters

e moredata (pyfits. HDU, pyfits. HDUList, or AstroData) — either an AstroData instance, an
HDUList instance, or an HDU instance to add to this AstroData object. When present,
data and header arguments will be ignored.

» data (numpy.ndarray) — ‘data’ and ‘header’ are used to construct a new HDU which is
then added to the HDUList associated to the AstroData instance. The ‘data’ argument
should be set to a valid numpy array. If ‘modedata’ is not specified, ‘data’ and ‘header’
must both be set.

 header (pyfits.Header) — ‘data’ and ‘header’ are used to construct a new HDU which is
then added to the ‘HDUList” associated to AstroData instance. The ‘header’ argument
should be set to a valid pyfits.Header object.

e auto_number (<bool>) — auto-increment the extension version, ‘EXTVER’, to fit file
convention

* extname (<str>) — extension name as set in keyword ‘EXTNAME’ (eg. ‘SCI’, ‘VAR’,
‘DQ’). This is used only when ‘header’ and ‘data’ are used.

* extver (<int>) — extension version as set in keyword ‘EXTVER’. This is used only when
‘header’ and ‘data’ are used.

* do_deepcopy (<bool>) — deepcopy the input before appending. May be useful when
auto_number is True and the input comes from another AD object.

close ()
Method will close the ‘HDUList’ on this instance.

count_exts (extname=None)
The count_exts() function returns the number of extensions matching the passed <extname> (as stored in
the HDUs “EXTNAME” header).

Parameters extname (<str>) — the name of the extension, equivalent to the value associated
with the “EXTNAME” key in the extension header.

Returns number of <extname> extensions
Return type <int>

ext_index (extension, hduref=False)
Takes an extension index, either an integer or (EXTNAME, EXTVER) tuple, and returns the index location
of the extension. If hduref is set to True, then the index returned is relative to the HDUList (0=PHU, 1=First
non-PHU extension). If hduref is False (the default) then the index returned is relative to the AstroData
numbering convention, where index=0 is the first extension in the MEF file.

get_key_value (key)
The get_key_value() function is used to get the value associated with a given key in the data-header unit
of a single-HDU AstroData instance (such as returned by iteration).

Note Single extension AstroData objects are those with only a single header-data unit besides
the PHU. They may exist if a single extension file is loaded, but in general are produced by
indexing or iteration instructions, Eg.:

4 Chapter 1. AstroData API, Methods and Properties

AstroData APl Documentation, Release X1

sead = ad[(“SCI”,1)]
for sead in ad[”’SCI’’]: ...

The variable “sead” above is ensured to hold a single extension AstroData object, and can be
used more convieniently.

Parameters key (<str> header keyword) — name of header keyword to set
Returns header keyword value

Return type <int>, or <float>, or <str>

Raises SingleHDUMemberExcept

info (oid=False, table=False, help=False)
Prints to stdout information about the phu and extensions found in the current instance.

insert (index, moredata=None, data=None, header=None, extname=None, extver=None,

auto_number=False, do_deepcopy=False)
Insert a header-data unit (HDUs) into the AstroData instance.

Parameters

¢ index (<int> or <tuple> (EXTNAME,EXTVER)) — the extension index, either an int or
(EXTNAME, EXTVER) pair before which the extension is to be inserted. Note: the first
data extension is [0]; cannot insert before the PHU. ‘index’ is the Astrodata index, where
0 is the 1st extension.

* moredata (pyfits. HDU, pyfits. HDUList, or AstroData) — An AstroData instance, an
HDUList instance, or an HDU instance. When present, data and header will be ignored.

 data (numpy.ndarray) — ‘data’ and ‘header’ are used in conjunction to construct a new
HDU which is then added to the HDUList of the AstroData instance. ‘data’ should be set
to a valid numpy array. If ‘modedata’ is not specified, ‘data’ and ‘header’ both must be
set.

* header (pyfits.Header) — ‘data’ and ‘header’ are used in conjunction to construct a new
HDU which is then added to the HDUList of the instance. The ‘header’ argument should
be set to a valid pyfits.Header object. If ‘moredata’ is not specified, ‘data’ and ‘header’
both must be set.

* extname (<str>) — extension name (eg. ‘SCI’, ‘VAR’, ‘DQ’)
* extver (<int>) — extension version (eg. 1, 2, 3)

e auto_number (<bool>) — auto-increment the extension version, ‘EXTVER’, to fit file
convention. If set to True, this will override the ‘extver’ and ‘extname’ arguments settings.

* do_deepcopy (<bool>) — deepcopy the input before appending. May be useful when
auto_number is True and the input comes from another AD object.

open (source, mode="readonly’)
Method wraps a source dataset, which can be in memory as another AstroData or pyfits HDUList, or on
disk, given as the string filename.

NOTE: In general, users should not use ‘open’ directly, but pass the filename to the AstroData construc-
tor. The constructor uses open(..) however. Users should use the constructor, which may perform extra
operations.

Parameters

* source (<str> | <AstroData> | <pyfits. HDUList>) — source contains some reference for
the dataset to be opened and associated with this instance. Generally it would be a file-
name, but can also be an AstroData instance or a pyfits. HDUList instance.

1.1. Class AstroData 5

AstroData APl Documentation, Release X1

* mode (<str>) — IO access mode, same as the pyfits open mode, ‘readonly, ‘update’, or
‘append’. The mode is passed to pyfits so if it is an illegal mode name, pyfits will be the
subsystem reporting the error.

phu_get_key_value (key)
The phu_get_key_value(..) function returns the value associated with the given key within the primary
header unit of the dataset. The value is returned as a string (storage format) and must be converted as
necessary by the caller.

Parameters key (<str>) — name of header value to retrieve
Returns keyword value as string or None if not present.
Return type <str>

phu_set_key_value (keyword=None, value=None, comment=None)
Add or update a keyword in the PHU of the AstroData object with a specific value and, optionally, a
comment

Parameters
* keyword (<str>) — Name of the keyword to add or update in the PHU
* value (<int>, <float>, or <str>) — Value of the keyword to add or update in the PHU
e comment (string) — Comment of the keyword to add or update in the PHU
remove (index, hdui=False)

Parameters index (<int>, or <tuple> (EXTNAME,EXTVER)) — the extension index, either an
int or (EXTNAME, EXTVER) pair before which the extension is to be inserted. Note: the
first data extension is [0], you cannot insert before the PHU. Index always refers to Astrodata
Numbering system, 0 = HDU

rename_ext (name, ver=None, force=True)
The rename_ext(..) function is used in order to rename an HDU with a new EXTNAME and EXTVER
identifier. Merely changing the EXTNAME and EXTVER values in the extensions pyfits.Header is not
sufficient. Though the values change in the pyfits.Header object, there are special HDU class members
which are not updated.

Warning This function manipulates private (or somewhat private) HDU members, specifically
‘name’ and ‘_extver’. STSCI has been informed of the issue and has made a special HDU
function for performing the renaming. When generally available, this new function will be
used instead of manipulating the HDU’s properties directly, and this function will call the
new pyfits. HDUList(..) function.

Note Works only on single extension instances.
Parameters
* name (<str>) — New ‘EXTNAME’ for the given extension.
* ver (<int>) — New ‘EXTVER’ for the given extension
« force (<bool>) — Will update even on subdata, or shared hdulist. Default=True

set_key_ value (key, value, comment=None)
The set_key_value() function is used to set the value (and optionally the comment) associated with a given
key in the data-header of a single-HDU AstroData instance. The value argument will be converted to
string, so it must have a string operator member function or be passed in as string.

Note Single extension AstroData objects are those with only a single header-data unit besides
the PHU. They may exist if a single extension file is loaded, but in general are produced by
indexing or iteration instructions.Eg.:

6 Chapter 1. AstroData API, Methods and Properties

AstroData APl Documentation, Release X1

sead = ad[(“SCI”,1)]
for sead in ad[”’SCI’’]: ...

The variable “sead” above is ensured to hold a single extension AstroData object, and can be
used more convieniently.

Parameters
* key (<str>) — header keyword
* value (<int>, or <float>, or <str>) — header keyword value
e comment (<str>) — header keyword comment

status (prune=False)
Returns the set of ‘status’ classifications, which are those that tend to change during the reduction of a
dataset based on the amount of processing, e.g. RAW vs PREPARED. Strictly, a ‘status’ type is any type
defined in or below the status part of the ‘classification’ directory within the configuration package. For
example, in the Gemini type configuration this means any type definition files in or below the ‘astro-
data_Gemini/ADCONFIG/classification/status’ directory.

Parameters prune (<bool>) — flag which controls ‘pruning’ the returned type list so that only
the leaf node type for a given set of related status types is returned.

Returns list of classification names
Return type <list> of strings

store_original_name ()
Method adds the key ‘ORIGNAME’ to PHU of an astrodata object containing the filename when object
was instantiated (without any directory info, ie. the basename).

If key has all ready been added (ie. has undergone processing where store_original_name was performed
before), then the value original filename is just returned. If the key is there, but does not match the original
filename of the object, then the original name is returned, NOT the value in the PHU. The value in the
PHU can always be found using ad.phu_get_key_value(‘ORIGNAME’).

type (prune=False)
Returns a list of type classifications. It is possible to ‘prune’ the list so that only leaf nodes are returned,
which is useful when leaf nodes take precedence such as for descriptors.

Note: types consist of a hierarchical tree of dataset types. This latter tree maps roughly to instrument-
modes, with instrument types branching from the general observatory type, (e.g. ‘GEMINI’).

Currently the distinction betwen status and type is not used by the system (e.g. in type-specific default
recipe assignments) and is provided as a service for higher level code, e.g. primitives and scripts which
make use of the distinction.

Parameters prune (<bool>) — flag which controls ‘pruning’ the returned type list so that only
the leaf node type for a given set of related types is returned.

Returns list of classification names
Return type <list> of strings

write (filename=None, clobber=False, rename=None, prefix=None, suffix=None)
The write method acts similarly to the ‘pyfits HDUList.writeto(..)’ function if a filename is given, or like
‘pyfits. HDUList.update(..)’ if no name is given, using whatever the current name is set to. When a name
is given, this becomes the new name of the Ast roData object and will be used on subsequent calls to
write for which a filename is not provided. If the clobber flag is False (the default) then ‘write(..)’
throws an exception if the file already exists.

Parameters

1.1. Class AstroData 7

AstroData APl Documentation, Release X1

* filename (<str>) — name of the file to write to. Optional if the instance already has a
filename defined, which might not be the case for new AstroData instances created in
memory.

¢ clobber (<bool>) — This flag drives if AstroData will overwrite an existing file.

* rename (<bool>) — This flag allows you to write the AstroData instance to a new filename,
but leave the ‘current’ name in memory.

* prefix (<str>) — Add a prefix to £ilename.

o suffix (<str>) — Add a suffix to filename.

8 Chapter 1. AstroData API, Methods and Properties

CHAPTER
TWO

INDICES AND TABLES

* genindex
* modindex

e search

AstroData APl Documentation, Release X1

10 Chapter 2. Indices and tables

PYTHON MODULE INDEX

a

astrodata.AstroData, |

11

AstroData APl Documentation, Release X1

12 Python Module Index

Symbols

__getitem__() (astrodata.AstroData.AstroData method),
3

A

append() (astrodata.AstroData.AstroData method), 4
AstroData (class in astrodata.AstroData), 1
astrodata.AstroData (module), 1

C

close() (astrodata.AstroData.AstroData method), 4
count_exts() (astrodata.AstroData.AstroData method), 4

D

data (astrodata.AstroData.AstroData attribute), 2
descriptors (astrodata.AstroData.AstroData attribute), 2

E

ext_index() (astrodata.AstroData.AstroData method), 4

F

filename (astrodata.AstroData.AstroData attribute), 2

G

get_key_value() (astrodata.AstroData.AstroData
method), 4

H

hdulist (astrodata.AstroData.AstroData attribute), 3
header (astrodata.AstroData.AstroData attribute), 2
headers (astrodata.AstroData.AstroData attribute), 2

info() (astrodata.AstroData.AstroData method), 5
insert() (astrodata.AstroData.AstroData method), 5

O

open() (astrodata.AstroData.AstroData method), 5

P

phu (astrodata.AstroData.AstroData attribute), 3

INDEX

phu_get_key_value() (astrodata.AstroData. AstroData
method), 6

phu_set_key_value() (astrodata.AstroData.AstroData
method), 6

R

remove() (astrodata.AstroData.AstroData method), 6
rename_ext() (astrodata.AstroData.AstroData method), 6

S

set_key_value() (astrodata.AstroData. AstroData method),
6

status() (astrodata.AstroData.AstroData method), 7

store_original_name() (astrodata.AstroData.AstroData
method), 7

T

type() (astrodata.AstroData.AstroData method), 7
types (astrodata.AstroData.AstroData attribute), 3

W

write() (astrodata.AstroData.AstroData method), 7

13

	AstroData API, Methods and Properties
	Class AstroData

	Indices and tables
	Python Module Index
	Index

