reduce Users Manual
Release X1.0.1

Kennneth Anderson

November 14, 2014

CONTENTS

1 Introduction 1
2 Installation 3
3 Interfaces 7
4 Supplemental tools 17
5 Discussion 23
6 6. Acknowledgments 25
Appendices

A reduce demo 27

CHAPTER
ONE

INTRODUCTION

This document is version 1.0 of the reduce Users Manual. This manual will describe the usage of reduce as an
application provided by the Gemini Observatory Astrodata package suite. reduce is an application that allows users
to invoke the Gemini Recipe System to perform data processing and reduction on one or more astronomical datasets.

This document presents details on applying reduce to astronomical datasets, currently defined as multi-extension
FITS (MEF) files, both through the application’s command line interface and the application programming interface
(API). Details and information about the ast rodata package, the Recipe System, and/or the data processing in-
volved in data reduction are beyond the scope of this document and will only be engaged when directly pertinent to
the operations of reduce.

1.1 Reference Documents

* The Gemini Recipe System: a dynamic workflow for automated data reduction, K. Labrie et al, SPIE, 2010.
* Developing for Gemini’s extensible pipeline environment, K. Labrie, C. Allen, P. Hirst, ADASS, 2011

e Gemini’s Recipe System; A publicly available instrument-agnostic pipeline infrastructure, K. Labrie et al,
ADASS 2013.

1.2 Overview

As an application, reduce provides interfaces to configure and launch the Gemini Recipe System, a framework for
developing and running configurable data processing pipelines and which can accommodate processing pipelines for
arbitrary dataset types. In conjunction with the development of ast rodata, Gemini Observatory has also developed
the compatible ast rodata_Gemini package, the code base currently providing abstraction of, and processing for,
Gemini Observatory astronomical observations.

113

In Gemini Observatory’s operational environment ‘“on summit,” reduce, astrodata, and the
astrodata_Gemini packages provide a currently defined, near-realtime, quality assurance pipeline, the so-
called QAP. reduce is used to launch this pipeline on newly acquired data and provide image quality metrics to
observers, who then assess the metrics and apply observational decisions on telescope operations.

Users unfamiliar with terms and concepts heretofore presented should consult documentation cited in the previous
sections (working on the Recipe System User Manual).

1.3 Glossary

adcc — Automatated Data Communication Center. Provides XML-RPC and HTTP services for pipeline
operations. Can be run externally to reduce. Users need not know about or invoke the adcc for

reduce Users Manual, Release X1.0.1

reduce operations. reduce will launch an adcc instance if one is not available. See Sec. The adcc
for further discussion on adcc.

astrodata (or Astrodata) — part of the gemini_python package suite that defines the dataset abstraction
layer for the Recipe System.

AstroData — not to be confused with astrodata, this is the main class of the ast rodata package, and
the one most users and developers will interact with at a programmatic level.

AstroDataType — Represents a data classification. A dataset will be classified by a number of types that
describe both the data and its processing state. The AstroDataTypes are hierarchical, from generic to
specific. For example, a typical GMOS image might have a set of types like

‘GMOS_S’, ‘GMOS_IMAGE’, ‘GEMINI’, ‘SIDEREAL’, ‘IMAGE’, ‘GMOS’, ‘GEMINI_SOUTH’,
‘GMOS_RAW’, ‘UNPREPARED’, ‘RAW’ (see types below).

astrodata_Gemini — the gemini_python package that provides all observatory specific definitions of data
types, recipes, and associated primitives for Gemini Observatory data.

astrodata_X — conceivably a data reduction package that could reduce other observatory and telescope
data. Under the Astrodata system, it is entirely possible for the Recipe System to process HST or Keck
data, given the development of an associated package, astrodata_HST or astrodata_Keck. Pipelines and
processing functions are defined for the particulars of each telescope and its various instruments.

Descriptor — Represents a high-level metadata name. Descriptors allow access to essential information
about the data through a uniform, instrument-agnostic interface to the FITS headers.

gemini_python — A suite of packages comprising astrodata, astrodata_Gemini, astrodata_FITS, and
gempy, all of which provide the full functionality needed to run Recipe System pipelines on observational
datasets.

gempy — a gemini_python package comprising functional utilities to the astrodata_Gemini package.

MEF - Multiple Extension FITS, the standard data format not only for Gemini Observatory but many
observatories.

primitive — A function defined within an astrodata_[X] package that performs actual work on the passed
dataset. Primitives observe tightly controlled interfaces in support of re-use of primitives and recipes for
different types of data, when possible. For example, all primitives called f1latCorrect must apply the
flat field correction appropriate for the data’s current AstroDataType, and must have the same set of input
parameters. This is a Gemini Coding Standard, it is not enforced by the Recipe System.

recipe — Represents the sequence of transformations. A recipe is a simple text file that enumerates the set
and order of primitives that will process the passed dataset. A recipe is the high-level pipeline definition.
Users can pass recipe names directly to reduce. Essentially, a recipe is a pipeline.

Recipe System — The gemin_python framework that accommodates an arbitrary number of defined
recipes and the primitives

reduce — The user/caller interface to the Recipe System and its associated recipes/pipelines.

subrecipe — Shorter recipe called like a primitive by a recipe or another subrecipe. The subrecipes are not
part of the main recipe index, they are more akin in purpose to primitives than to recipes.

type or typeset — Not to be confused with language primitive or programmatic data types, these are
data types defined within an astrodata_[X] package used to describe the kind of observational data that
has been passed to the Recipe System., Eg., GMOS_IMAGE, NIRI. In this document, these terms are
synonymous with AstroDataType unless otherwise indicated.

2 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

The astrodata package has several dependencies like numpy, astropy, and others. All dependencies of
gemini_python and astrodata are provide by the Ureka package, and users are highly encouraged to install
and use this very useful package. It is an easy and, perhaps, best way to get everything you need and then some. Ureka
is available at http://ssb.stsci.edu/ureka/.

WARNING: The Ureka installation script will not set up IRAF for you. You need to do that yourself. Here’s how:

cd ~

mkdir iraf

cd iraf

mkiraf

—-— creating a new uparm directory

Terminal types: xgterm,xterm,gterm,vt640,vt100,etc.

v »r A

Enter terminal type: xgterm
A new LOGIN.CL file has been created in the current directory.
You may wish to review and edit this file to change the defaults.

Once a user has has retrieved the gemini_python package, available as a tarfile from the Gemini website
(http://gemini.edu), and untarred only minor adjustments need to be made to the user environment in order to make
astrodata importable and allow reduce to work properly.

2.1 Install

2.1.1 Recommended Installation

It is recommended to install the software in a location other than the standard python location for modules (the
default site-packages). This is also the only solution if you do not have write permission to the default
site-packages. Here is how you install the software somewhere other than the default location:

$ python setup.py install --prefix=/your/favorite/location
/your/favorite/location mustalready exist. This command will install executable scripts in a bin subdirec-
tory, the documentation in a share subdirectory, and the modules ina 1ib/python2.7/site-packages sub-

directory. The modules being installed are ast rodata, astrodata_FITS, astrodata_Gemini, and gempy.
In this manual, we will only use astrodata.

Because you are not using the default location, you will need to add two paths to your environment. You might want
to add the following to your .cshrc or .bash_profile, or equivalent shell configuration script.

C shell(csh, tcsh):

setenv PATH /your/favorite/location/bin:${PATH}
setenv PYTHONPATH /your/favorite/location/lib/python2.7/site-packages:${PYTHONPATH}

http://ssb.stsci.edu/ureka/
http://gemini.edu

reduce Users Manual, Release X1.0.1

Bourne shells (sh, bash, ksh, ...)

export PATH=/your/favorite/location/bin:${PATH}
export PYTHONPATH=/your/favorite/location/lib/python2.7/site-packages:${PYTHONPATH}

If you added those lines to your shell configuration script, make sure your source the file to activate the new setting.
For csh/tcsh:

$ source ~/.cshrc
$ rehash

For bash:

$ source ~/.bash_profile

2.1.2 Installation under Ureka

Assuming that you have installed Ureka and that you have write access to the Ureka directory, this will install
astrodata in the Ureka site-packages directory. WARNING: While easier to install and configure, this will
modify your Ureka installation.

$ python setup.py install

This will also add executables to the Ureka bin directory and documentation to the Ureka share directory.

With this installation scheme, there is no need to add paths to your environment. However, it is a lot more complicated
to remove the Gemini software in case of problems, or if you just want to clean it out after evaluation.

In tcsh, you will need to run rehash to pick the new executables written to bin.

2.2 Test the installation

Start up the python interpreter and import astrodata:

$ python
>>> import astrodata

Next, return to the command line and test that reduce is reachable and runs. There may be some delay as package
modules are byte compiled:

$ reduce -h [--help]

This will print the reduce help to the screen.

If users have Gemini fits files available, they can test that the Recipe System is functioning as expected with a test
recipe provided by the astrodata_Gemini package:

$ reduce —--recipe test_one /path/to/gemini_data.fits

If all is well, users will see something like:

Resetting logger for application: reduce
Logging configured for application: reduce
——— reduce, v4890 -—--—-
Running under astrodata Version GP-X1
All submitted files appear valid
Starting Reduction on set #1 of 1

4 Chapter 2. Installation

reduce Users Manual, Release X1.0.1

Processing dataset (s):
gemini_data.fits

RECIPE: test_one

PRIMITIVE: showParameters

rtf = False

suffix = ’_scafaasled’

otherTest = False

logindent = 3

logfile = ’reduce.log’

reducecache = ' .reducecache’

storedcals = ’calibrations/storedcals’

index =1

retrievedcals = 'calibrations/retrievedcals’

cachedict = {’storedcals’: ’'calibrations/storedcals’, ’'retrievedcals’:

"calibrations/retrievedcals’, ’'calibrations’: ’calibrations’,
"reducecache’ : ' .reducecache’}
loglevel = ’stdinfo’
calurl_dict = {’CALMGR’: ’'http://fits/calmgr’,
"UPLOADPROCCAL’ : "http://fits/upload_processed_cal’,
"QAMETRICURL’ : 'http://fits/gareport’,
"QAQUERYURL’ : 'http://fits/gaforgui’,
"LOCALCALMGR' : 'http://localhost:% (httpport)d/calmgr/% (caltype)s’}
logmode = ’standard’
test = True
writeInt = False
calibrations = ’'calibrations’

Wrote gemini_data.fits in output directory

reduce completed successfully.

Users curious about the URLSs in the example above, i.e. http://fits/.. ., see Sec. Fits Storage in Chapter 5,
Discussion.

2.2. Test the installation 5

reduce Users Manual, Release X1.0.1

6 Chapter 2. Installation

CHAPTER
THREE

INTERFACES

3.1 Introduction

The reduce application provides a command line interface and an API, both of which can configure and launch a
Recipe System processing pipeline (a ‘recipe’) on the input dataset. Control of reduce and the Recipe System is
provided by a variety of options and switches. Of course, all options and switches can be accessed and controlled
through the APIL.

3.2 Command line interface

We begin with the command line help provided by reduce --help, followed by further description and discussion
of certain non-trivial options that require detailed explanation.

usage: reduce [options] fitsfile [fitsfile ...]

positional arguments:

fitsfile [fitsfile ...]

The [options] are described in the following sections.

3.2.1 Informational switches

-h, —help show the help message and exit
-v, —version show program’s version number and exit
-d, —displayflags Display all parsed option flags and exit.

When specified, this switch will present the user with a table of all parsed arguments and then exit without
running. This allows the user to check that the configuration is as intended. The table provides a convenient
view of all passed and default values. Unless a user has specified a recipe (-1, —recipe), ‘recipename’ indicates
‘None’ because at this point, the Recipe System has not yet been engaged and a default recipe not yet determined.

Eg..:

$ reduce -d --logmode console fitsfile.fits

77777777777777777777 switches, vars, vals --————--—"""————————-

reduce Users Manual, Release X1.0.1

["——1invoked’] :: invoked :: False

[/ ——addprimset’] :: primsetname :: None

["-d", "--displayflags’] :: displayflags :: True

["-p’", "—-—param’] :: userparam :: None
["——1logmode’] :: logmode :: ['console’]
["-r", "——recipe’] :: recipename :: None
["——throw_descriptor_exceptions’] :: throwDescriptorExceptions :: False
["--1logfile’] :: logfile :: reduce.log
["-t’, "—-—astrotype’] :: astrotype :: None
["——override_cal’] :: user_cals :: None
["——context’] :: running_contexts :: None

[/ ——calmgr’] :: cal_mgr :: None

[T ——suffix’] :: suffix :: None
["--1loglevel’] :: loglevel :: stdinfo
Input fits file(s): fitsfile.fits

3.2.2 Configuration Switches, Options

—addprimset <PRIMSETNAME> Add this path to user-supplied primitives for reduction. eg., path to a primitives
module.

—calmgr <CAL_MGR> This is a URL specifying a calibration manager service. A calibration manager overides
Recipe System table. Not available outside Gemini operations.

—context <RUNNING_CONTEXTS> Use <RUNNING_CONTEXTS> for primitives sensitive to context. Eg., —
context QA When not specified, the context defaults to ‘QA’.

—invoked Boolean indicating that reduce was invoked by the control center.

—logmode <LOGMODE> Set logging mode. One of ‘standard’, ‘console’, ‘quiet’, ‘debug’, or ‘null’, where ‘con-
sole’ writes only to screen and ‘quiet’ writes only to the log file. Default is ‘standard’.

—logfile <LOGFILE> Set the log file name. Default is ‘reduce.log’ in the current directory.

—loglevel <LOGLEVEL> Set the verbose level for console logging. One of ‘critical’, ‘error’, ‘warning’, ‘status’,
‘stdinfo’, ‘fullinfo’, ‘debug’. Default is ‘stdinfo’.

—override_cal <USER_CALS [USER_CALS ...]> The option allows users to provide their own calibrations to
reduce. Add a calibration to User Calibration Service. ‘—override_cal CALTYPE:CAL_PATH’ Eg..:

—override_cal processed_arc:wcal/gsTest_arc.fits

-p <USERPARAM [USERPARAM ...]>, -param <USERPARAM [USERPARAM ...]> Set a primitive parame-
ter from the command line. The form ‘-p par=val’ sets the parameter in the reduction context such that all
primitives will ‘see’ it. The form

-p ASTROTYPE:primitivename:par=val
sets the parameter such that it applies only when the current reduction type (type of current reference image)

is ‘ASTROTYPE’ and the primitive is ‘primitivename’. Separate parameter-value pairs by whitespace: (eg. ‘-p
parl=vall par2=val2’)

See Sec. Overriding Primitive Parameters, for more information on these values.

-r <RECIPENAME>, —recipe <RECIPENAME> Specify an explicit recipe to be used rather than internally deter-
mined by a dataset’s <ASTROTYPE>. Default is None and later determined by the Recipe System based on the
AstroDataType.

8 Chapter 3. Interfaces

reduce Users Manual, Release X1.0.1

-t <ASTROTYPE>, —astrotype <ASTROTYPE> Run a recipe based on this AstroDataType, which overrides de-
fault type or begins without initial input. Eg., recipes that begin with primitives that acquire data. reduce
default is None and determined internally.

—suffix <SUFFIX> Add ‘suffix’ to output filenames at end of reduction.

—throw_descriptor_exceptions Boolean indicating descriptor exceptions are to be raised. This is a development
switch.

3.2.3 Nominal Usage

The minimal call for reduce can be

$ reduce <dataset.fits>

While this minimal call is available at the Gemini Observatory (see Sec. Fits Storage), if a calibration service is
unavailable to the user — likely true for most users — users should call reduce on a specified dataset by providing
calibration files with the —overrride_cal option.

For example:

$ reduce --override_cal processed_arc:wcal/gsTest_arc.fits <dataset.fits>

Such a command for complex processing of data is possible because AstroData and the Recipe System do all the
necessary work in determining how the data are to be processed, which is critcially based upon the determination of
the typeset that applies to that data.

Without any user-specified recipe (-r —recipe), the default recipe is gaReduce, which is defined for various Astro-
DataTypes and currently used at the summit. The Recipe System uses a combination of index, AstroDataTypes, and
recipe naming convention to identify the appropriate recipe to run.

The gaReduce recipe for a GMOS_IMAGE, named recipe.gaReduce.GMOS_IMAGE, specifies that the fol-
lowing primitives are called on the data:

prepare
addDQ

addVAR

detectSources
measurelQ

measureBG
measureCCAndAstrometry
overscanCorrect
biasCorrect
ADUToElectrons

addVAR

flatCorrect
mosaicDetectors
makeFringe
fringeCorrect
detectSources
measurelQ

measureBG
measureCCAndAstrometry
addToList

The point here is not to overwhelm readers with a stack of primitive names, but to present both the default pipeline
processing that the above simple reduce command invokes and to demonstrate how much the reduce interface
abstracts away the complexity of the processing that is engaged with the simplicity of commands.

3.2. Command line interface 9

reduce Users Manual, Release X1.0.1

3.2.4 Overriding Primitive Parameters

In some cases, users may wish to change the functional behaviour of certain processing steps, i.e. change default
behaviour of primitive functions.

Each primitive has a set of pre-defined parameters, which are used to control functional behaviour of the primitive.
Each defined parameter has a “user override” token, which indicates that a particular parameter may be overridden by
the user. Users can adjust parameter values from the reduce command line with the option,

-p, —param

If permitted by the “user override” token, parameters and values specified through the -p, —param option will override
the defined parameter default value and may alter default behaviour of the primitive accessing this parameter. A user
may pass several parameter-value pairs with this option.

Eg.:

$ reduce -p parl=vall par2=val2 [par3=val3 ...] <fitsfilel.fits>

For example, some photometry primitives perform source detection on an image. The ‘detection threshold’ has a
defined default, but a user may alter this parameter default to change the source detection behaviour:

$ reduce -p threshold=4.5 <fitsfile.fits>

3.2.5 The @file facility

The reduce command line interface supports what might be called an ‘at-file’ facility (users and readers familiar with
IRAF will recognize this facility). This facility allows users to provide any and all command line options and flags to
reduce viain a single acsii text file.

By passing an @file to reduce on the command line, users can encapsulate all the options and positional arguments
they might wish to specify in a single @file. It is possible to use multiple @files and even to embed one or more
@files in another. The parser opens all files sequentially and parses all arguments in the same manner as if they were
specified on the command line. Essentially, an @file is some or all of the command line and parsed identically.

To illustrate the convenience provided by an ‘@file®, let us begin with an example reduce command line that has a
number of arguments:

$ reduce -p GMOS_IMAGE:contextReport:tpar=100 GMOS_IMAGE:contextReport:report_inputs=True
-r recipe.ArgsTest --context ga S2013061650019.fits N20100311S0090.fits

Ungainly, to be sure. Here, two (2) user parameters are being specified with -p, a recipe with -r, and a context
argument is specified to be qa . This can be wrapped in a plain text @file called reduce_args.par:

S20130616S0019.fits

N2010031150090.fits

——param

GMOS_IMAGE:contextReport:tpar=100
GMOS_IMAGE:contextReport:report_inputs=True
-r recipe.ArgsTests

—-—context ga

This then turns the previous reduce command line into something a little more keyboard friendly:

$ reduce @reduce_args.par

The order of these arguments is irrelevant. The parser will figure out what is what. The above file could be thus written
like:

10 Chapter 3. Interfaces

mailto:'@file

reduce Users Manual, Release X1.0.1

-r recipe.ArgsTests

——param

GMOS_IMAGE:contextReport:tpar=100
GMOS_IMAGE:contextReport:report_inputs=True
—-—context ga

S20130616S0019.fits

N20100311sS0090.fits

Comments are accommodated, both as full line and in-line with the # character. White space is the only significant
separator of arguments: spaces, tabs, newlines are all equivalent when argument parsing. This means the user can
“arrange” their @file for clarity.

Here’s a more readable version of the file from the previous example using comments and tabulation:

reduce parameter file
yyyy-mm-dd
GDPSG

B

Spec the recipe
recipe.ArgsTests # test recipe

primitive parameters here
These are "untyped’, i.e. global
——param

tpar=100

report_inputs=True

—-—context
ga # QA context

S20130616S0019.fits
N20100311S0090.fits

All the above examples of reduce_args.par are equivalently parsed, which users may check by adding the -d
flag:

$ reduce -d @redpars.par

77777777777777777777 switches, vars, vals —-————————————————————

Literals var ’'dest’ Value

["——1invoked’] :: invoked :: False
["——addprimset’] :: primsetname :: None

["-d’", ’'—--displayflags’] :: displayflags :: True

["-p", "—-—-param’] :: userparam :: ["tpar=100", ’report_inputs=True’]
["——1logmode’] :: logmode :: standard

["-x", '—-recipe’] :: recipename :: ['recipe.ArgTests’]
["-—throw_descriptor_exceptions’] :: throwDescriptorExceptions :: False
["--1logfile’] :: logfile :: reduce.log

["-t", "—-—astrotype’] :: astrotype :: None
["——override_cal’] :: user_cals :: None

["——context’] :: running_contexts c: [TQAT]

["——calmgr’] :: cal_mgr :: None

[f——suffix’] :: suffix :: None

["--1loglevel’] :: loglevel :: stdinfo

3.2. Command line interface 11

reduce Users Manual, Release X1.0.1

Input fits file(s): S20130616S0019.fits
Input fits file(s): N20100311S0090.fits

3.2.6 Recursive @file processing

As implemented, the @file facility will recursively handle, and process correctly, other @file specifications that appear
in a passed @file or on the command line. For example, we may have another file containing a list of fits files,
separating the command line flags from the positional arguments.

We have a plain text ‘fitsfiles’ containing the line:

test_data/S2013061650019.fits

We can indicate that this file is to be consumed with the prefix character “@” as well. In this case, the ‘reduce_args.par’
file could thus appear:

reduce test parameter file
@fitsfiles # file with fits files

AstroDataType
-t GMOS_IMAGE

primitive parameters.
——param
report_inputs=True
tpar=99
FOO=BAR

Spec the recipe
-r recipe.ArgTests

The parser will open and read the @fitsfiles, consuming those lines in the same way as any other command line
arguments. Indeed, such a file need not only contain fits files (positional arguments), but other arguments as well. This
is recursive. That is, the @fitsfiles can contain other at-files”, which can contain other “at-files”, which can contain ...,
etc. These will be processed serially.

As stipulated earlier, because the @file facility provides arguments equivalent to those that appear on the command
line, employment of this facility means that a reduce command line could assume the form:

$ reduce @parfile Q@fitsfiles

or equally:

$ reduce @fitsfiles @parfile

where ‘parfile’ could contain the flags and user parameters, and ‘fitsfiles’ could contain a list of datasets.
Eg., fitsfiles comprises the one line:

test_data/N20100311S0090.fits

while parfile holds all other specifications:

reduce test parameter file
GDPSG

AstroDataType
-t GMOS_IMAGE

12 Chapter 3. Interfaces

reduce Users Manual, Release X1.0.1

primitive parameters.

—-—param
report_inputs=True
tpar=99 # This is a test parameter
FOO=BAR # This is a test parameter

Spec the recipe
-r recipe.ArgTests

The @file does not need to be located in the current directory. Normal, directory path syntax applies, for example:

reduce Q../../mydefaultparams @fitsfile

3.2.7 Overriding @file values

The reduce application employs a customized command line parser such that the command line option
-p or —param

will accumulate a set of parameters or override a particular parameter. This may be seen when a parameter is specified
in a user @file and then specified on the command line. For unitary value arguments, the command line value will
override the @file value.

It is further specified that if one or more datasets (i.e. positional arguments) are passed on the command line, all fits
files appearing as positional arguments in the parameter file will be replaced by the command line arguments.

Using the parfile above,
Eg. 1) Accumulate a new parameter:

$ reduce @parfile —--param FOO=BARSOOM

parsed options:

AstroDataType: GMOS_IMAGE

FITS files: [7520130616S0019.fits’, ’N20100311S0090.fits’]
Parameters: tpar=100, report_inputs=True, FOO=BARSOOM
RECIPE: recipe.ArgsTest

Eg. 2) Override a parameter in the @file:

$ reduce @parfile --param tpar=99

parsed options:

AstroDataType: GMOS_IMAGE

FITS files: [7S20130616S0019.fits’, ’'N20100311S0090.fits’]
Parameters: tpar=99, report_inputs=True
RECIPE: recipe.ArgsTest

Eg. 3) Override the recipe:

$ reduce Q@parfile -r=recipe.FO00O

parsed options:
AstroDataType: GMOS__IMAGE
FITS files: [752013061650019.fits’, 'N20100311S0090.fits’]

3.2. Command line interface 13

reduce Users Manual, Release X1.0.1

Parameters: tpar=100, report_inputs=True
RECIPE: recipe.FO0O

Eg. 4) Override a recipe and specify another fits file. The file names in the @file will be ignored:

$ reduce @parfile -r=recipe.FOO test_data/N20100311S0090_1.fits

parsed options:

AstroDataType: GMOS__IMAGE

FITS files: ["test_data/N20100311S0090_1.fits’]
Parameters: tpar=100, report_inputs=True
RECIPE: recipe.FO0O

3.3 Application Programming Interface (API)

Note: This section discusses and describes programming interfaces available on reduce and the underlying class
Reduce. This section is for advanced users wishing to code with reduce rather than just using it on the command

line. The common user can safely skip this section.

The reduce application is essentially a skeleton script providing the described command line interface. After parsing
the command line, the script then passes the parsed arguments to its main() function, which in turn calls the Reduce()
class constructor with “args”. Class Reduce() is defined in the module coreReduce . py. reduce and class Reduce
are both scriptable, as the following discussion will illustrate.

3.3.1 reduce.main()

The main() function of reduce receives one (1) parameter that is a Namespace object as returned by a call on Argu-
mentParser.parse_args(). Specific to reduce, the caller can supply this object by a call on the parseUtils.buildParser()
function, which returns a fully defined reduce parser. The parser object should then be called with the parse_args()
method to return a valid reduce parser Namespace. Since there is no interaction with sys.argv, as in a command line
call, all Namespace attributes have only their defined default values. It is for the caller to set these values as needed.

As the example below demonstrates, once the “args” Namespace object is instantiated, a caller can set any arguments
as needed. Bu they must be set to the correct type. The caller should examine the various “args” types to determine
how to set values. For example, args.files is type list, whereas args.recipename is type string.

Eg.,

>>> from astrodata.adutils.reduceutils import reduce

>>> from astrodata.adutils.reduceutils import parseUtils
>>> args = parseUtils.buildParser ("Reduce,v2.0") .parse_args()
>>> args.files

[]

>>> args.files.append(’S2013061650019.fits”)

>>> args.recipename = "recipe.FOO"

>>> reduce.main (args)

—-—— reduce, v2.0 —-—-—

Starting Reduction on set #1 of 1

Processing dataset (s):

S20130616S0019.fits

Processing will proceed as usual.

14 Chapter 3. Interfaces

reduce Users Manual, Release X1.0.1

3.3.2 Class Reduce and the runr() method

Class Reduce is defined in astrodata.adutils.reduceutils module, coreReduce.py.

The reduce.main() function serves mainly as a callable for the command line interface. While main() is callable by
users supplying the correct “args” parameter (See reduce.main()), the Reduce() class is also callable and can be used
directly, and more appropriately. Callers need not supply an “args” parameter to the class constructor. The instance of
Reduce will have all the same arguments as in a command line scenario, available as attributes on the instance. Once
an instance of Reduce() is instantiated and instance attributes set as needed, there is one (1) method to call, runr().
This is the only public method on the class.

Note: When using Reduce() directly, callers must configure their own logger. Reduce() does not configure logutils
prior to using a logger as returned by logutils.get_logger(). The following example will illustrate how this is easily

done. It is highly recommended that callers configure the logger.

Eg.,

>>> from astrodata.adutils.reduceutils.coreReduce import Reduce
>>> reduce = Reduce ()

>>> reduce.files

[]

>>> reduce.files.append(’S2013061650019.£fits”)

>>> reduce.files

[7S2013061650019.fits’]

Once an instance of Reduce has been made, callers can then configure logutils with the appropriate settings supplied
on the instance. This is precisely what reduce does when it configures logutils.

>>> from astrodata.adutils import logutils
>>> logutils.config(file_name=reduce.logfile, mode=reduce.logmode,
console_lvl=reduce.loglevel)

At this point, the caller is able to call the runr() method on the “reduce” instance.

>>> reduce.runr ()

All submitted files appear valid
Starting Reduction on set #1 of 1
Processing dataset (s):
52013061650019.fits

Processing will then proceed in the usual manner.

3.3. Application Programming Interface (API) 15

reduce Users Manual, Release X1.0.1

16 Chapter 3. Interfaces

CHAPTER
FOUR

SUPPLEMENTAL TOOLS

The astrodata package provides a number of command line driven tools, which users may find helpful in executing
reduce on their data.

With the installation and configuration of astrodata and reduce comes some supplemental tools to help users
discover information, not only about their own data, but about the Recipe System, such as available recipes, primitives,
and defined AstroDataTypes.

If the user environment has been configured correctly these applications will work directly.

4.1 listprimitives

The application 1istprimitives is available as a command line executable. This tool displays available primitives
for all AstroDataTypes, their parameters, and defaults. These are the parameters discussed in Sec. Overriding Primitive
Parameters that can be changed by the user with the -p, —param option on reduce. under the AstroDataTypes. The
help describes more options:

$ listprimitives -h
Usage: listprimitives [options]

Gemini Observatory Primitive Inspection Tool, v1.0 2011

Options:

-h, —--help show this help message and exit

-c, ——use-color apply color output scheme

-i, —--info show more information

-p, ——parameters show parameters

-r, —-recipes list top recipes

-s, ——primitive-set show primitive sets (Astrodata types)
-v, ——-verbose set verbose mode

——view-recipe=VIEW_RECIPE
display the recipe

4.1.1 listprimitives information

The following section presents examples of the kind of information that 1istprimitives may provide.
Show available recipes:

$ listprimitives -r

17

reduce Users Manual, Release X1.0.1

RECIPES_Gemini

1. basicQA

2. checkQA
3. makeProcessedArc.GMOS_SPECT
4. makeProcessedBias
5. makeProcessedDark
6. makeProcessedFlat
7. makeProcessedFlat.GMOS_IMAGE
8. makeProcessedFlat.GMOS_SPECT
9. makeProcessedFlat.NIRI_IMAGE
10. makeProcessedFringe
11. gaReduce.GMOS_IMAGE
12. gaReduce.GMOS_SPECT
13. gaReduce.NIRI_IMAGE
14. gaReduceAndStack.GMOS_IMAGE
15. gaStack.GMOS_IMAGE
16. reduce.F2_ IMAGE
17. reduce.GMOS_IMAGE

Subrecipes

1. biasCorrect

2. correctWCSToReferenceCatalog
3. darkCorrect

4. flatCorrect

5. lampOnLampOff

6. makeSky

7. overscanCorrect

8. prepare

9. skyCorrect

1 standardizeHeaders

1 thermalEmissionCorrect

= o .

Users can also display the contents of a particular recipe or subrecipe. This will present the sequence of primitives
that will be called by the Recipe System when the particular recipe is either specified through the reduce command
line by the user, or selected internally by the Recipe System itself.

For example, a user may like to see the primitive stack called by the default ‘QA’ recipe for GMOS_IMAGE data. As
seen in the above example, these ‘qa’ recipes are defined for several AstroDataTypes.

Show the primitive stack for the ‘qa” GMOS_IMAGE type:

$ listprimitives —--view-recipe gaReduce.GMOS_IMAGE

RECIPE: gaReduce.GMOS_IMAGE

This recipe performs the standardization and corrections needed to convert
the raw input science images into a single stacked science image

prepare

addDQ

addVAR (read_noise=True)
detectSources
measurelQ (display=True)
measureBG

18 Chapter 4. Supplemental tools

reduce Users Manual, Release X1.0.1

measureCCAndAstrometry
overscanCorrect
biasCorrect
ADUToElectrons

addVAR (poisson_noise=True)
flatCorrect
mosaicDetectors
makeFringe

fringeCorrect
detectSources

measurelQ (display=True)
measureBG
measureCCAndAstrometry
addToList (purpose=forStack)

listprimitives is in need of refinement and work continues on building a tool that will present primitives and
parameters in a more focused way, i.e., report only those primitives and parameters relevant to a given dataset. As
it currently stands, users can request that 1istprimitives display primitive parameters (as may be passed to
reduce through the -p or —param option, Sec. Overriding Primitive Parameters), but this results in a list of all
AstroDataTypes, their primitives and associated parameters. Admittedly, this list is rather ungainly, but users may see,
for example, that the primitive detect Sources has several user-tunable parameters:

detectSources
suffix: ’_sourcesDetected’
centroid_function: 'moffat’
threshold: 3.0
sigma: None
fwhm: None
method: ’sextractor’
max_sources: 50

See the discussion in Sec. Overriding Primitive Parameters on command line override of primitive parameters, and
where overriding the ‘threshold’ parameter is dicussed specifically.

4.2 typewalk

typewalk examines files in a directory or directory tree and reports the types and status values through the Astro-
DataType classification scheme. Running typewalk on a directory containing some Gemini datasets will demon-
strate what users can expect to see. If a user has downloaded gemini_python X1 package with the ‘test_data’, the user
can move to this directory and run t ypewalk on that extensive set of Gemini datasets.

By default, typewalk will recurse all subdirectories under the current directory. Users may specify an explicit
directory with the -d or —dir option; the behavior remains recursive.

typewalk provides the following options [-h, —help]:

-h, —--help show this help message and exit

-b BATCHNUM, --batch BATCHNUM
In shallow walk mode, number of files to process at a
time in the current directory. Controls behavior in
large data directories. Default = 100.

——calibrations Show local calibrations (NOT IMPLEMENTED) .

-c, —-color Colorize display

-d TWDIR, --dir TWDIR

4.2. typewalk 19

reduce Users Manual, Release X1.0.1

Walk this directory and report types. default is cwd.
—-f FILEMASK, —--filemask FILEMASK

Show files matching regex <FILEMASK>. Default is all

.fits and .FITS files.

-i, —--info Show file meta information.

—-—keys KEY [KEY ...] Print keyword values for reported files.Eg., —-keys
TELESCOP OBJECT

-n, ——norecurse Do not recurse subdirectories.

—-—or Use OR logic on ’types’ criteria. If not specified,

matching logic is AND (See —--types). Eg., —--or —--types
GEMINI_SOUTH GMOS_IMAGE will report datasets that are
either GEMINI_SOUTH xORx GMOS_IMAGE.

—-o OUTFILE, —--out OUTFILE
Write reported files to this file. Effective only with
—-—types option.

—--raise Raise descriptor exceptions.

—-—types TYPES [TYPES ...]
Find datasets that match only these type criteria.
Eg., —--types GEMINI_SOUTH GMOS_IMAGE will report
datasets that are both GEMINI_SOUTH *andx GMOS_IMAGE.

—-—status Report data processing status only.
—-—typology Report data typologies only.
—-—xtypes XTYPES [[XTYPES ...]

Exclude <xtypes> from reporting.
Files are selected and reported through a regular expression mask which, by default, finds all ” fits” and ”.FITS” files.
Users can change this mask with the -f, —filemask option.

As the —types option indicates, t ypewalk can find and report data that match specific type criteria. For example, a
user might want to find all GMOS image flats under a certain directory. t ypewalk will locate and report all datasets
that would match the AstroDataType, GMOS_IMAGE_FLAT.

A user may request that a file be written containing all datasets matching AstroDataType qualifiers passed by the —
types option. An output file is specified through the -0, —out option. Output files are formatted so they may be passed
directly to the reduce command line via that applications ‘at-file’ (@file) facility. See The @file facility or the reduce
help for more on ‘at-files’.

Users may select type matching logic with the —or switch. By default, qualifying logic is AND, i.e. the logic specifies
that all types must be present (x AND y); —or specifies that ANY types, enumerated with —types, may be present (x
OR y). —or is only effective when the —types option is specified with more than one type.

For example, find all GMOS images from Cerro Pachon in the top level directory and write out the matching files,
then run reduce on them (-n is ‘norecurse’):

$ typewalk -n —--types GEMINI_SOUTH GMOS_IMAGE --out gmos_images_south
$ reduce @gmos_images_south

Find all F2_SPECT and GMOS_SPECT datasets in a directory tree:

$ typewalk --or —--types GMOS_SPECT F2_SPECT

This will also report match results to stdout, colourized if requested (-c).

Users may find the —xtypes flag useful, as it provides a facility for filtering results further by allowing certain types to
be excluded from the report.

For example, find GMOS_IMAGE types, but exclude ACQUISITION images from reporting:

$ typewalk --types GMOS_IMAGE --xtypes ACQUISITION

20 Chapter 4. Supplemental tools

reduce Users Manual, Release X1.0.1

directory: ../test_data/output
S20131010S0105.fits oo v (GEMINI) (GEMINI_SOUTH) (GMOS) (GMOS_IMAGE)
(GMOS_RAW) (GMOS_S) (IMAGE) (RAW) (SIDEREAL) (UNPREPARED)

S20131010S0105_forFringe.fits (GEMINI) (GEMINI_SOUTH) (GMOS) (GMOS_IMAGE)
(GMOS_S) (IMAGE) (NEEDSFLUXCAL) (OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED)
(PREPARED) (SIDEREAL)

$20131010S0105_forStack.fits (GEMINI) (GEMINI_SOUTH) (GMOS) (GMOS_IMAGE)
(GMOS_S) (IMAGE) (NEEDSFLUXCAL) (OVERSCAN_SUBTRACTED) (OVERSCAN_TRIMMED)
(PREPARED) (SIDEREAL)

Exclude ACQUISITION images that have already had some processing done:

$ typewalk --types GMOS_IMAGE --xtypes ACQUISITION PREPARED

directory: ../test_data/output
S20131010S0105.fits ..., (GEMINI) (GEMINI_SOUTH) (GMOS) (GMOS_IMAGE)
(GMOS_RAW) (GMOS_S) (IMAGE) (RAW) (SIDEREAL) (UNPREPARED)

With —types and —xtypes, users may really tune their searches for very specific datasets.

4.2. typewalk

21

reduce Users Manual, Release X1.0.1

22

Chapter 4. Supplemental tools

CHAPTER
FIVE

DISCUSSION

5.1 Fits Storage

The URLs that appear in test_one recipe example (Sec. Test the installation), reference web services avail-
able within the Gemini Observatory’s operational environment. They will not be available directly to users running
reduce outside of the Gemini Observatory environment.

In the context of reduce and the Astrodata Recipe System, FitsStorage provides a calibration management and
association feature. Essentially, given a science frame (or any frame that requires calibration) and a calibration type
requested, FitsStorage is able to automatically choose the best available calibration of the required type to apply to the
science frame. The Recipe System uses a machine-oriented calibration manager interface in order to select calibration
frames to apply as part of pipeline processing.

Though this service is not currently available to general gemini_python users, plans to provide this as a local calibration
service are in place and expected for Future Enhancements.

5.2 The adcc

As a matter of operations, reduce and the Recipe System depend upon the services of what is called the adcc,
the Automated Data Communication Center. The adcc provides services to pipeline operations through two proxy
servers, an XML-RPC server and an HTTP server. The XML_RPC server serves calibration requests made on it,
and retrieves calibrations that satisfiy those requests from the Gemini FITS Store, a service that provides automated
calibration lookup and retrieval.

The adcc can be run externally and will run continuously until it is shutdown. Any instances of reduce (and the
Recipe System) will employ this external instance of the adcc to service a pipeline’s calibration requests. However,
a user of reduce need not start an instance of the adcc nor, indeed, know anytihng about the adcc per se. If one is
not available, an instance of the adcc will be started by reduce itself, and will serve that particular reduce process
and then terminate.

This note is provided should users notice an adcc process and wonder what it is.

5.3 Future Enhancements

5.3.1 Intelligence

One enhancement long imagined is what has been generally termed ‘intelligence’. That is, an ability for either
reduce or some utility to automatically do AstroDataType classification of a set of data, group them appropriately,
and then pass these grouped data to the Recipe System.

23

reduce Users Manual, Release X1.0.1

As things stand now, it is up to the user to pass commonly typed data to reduce. As shown in the previous section,
typewalk, t ypewalk can help a user perform this task and create a ‘ready-to-run’ @file that can be passed directly to
reduce. Properly implemented ‘intelligence’ will not require the user to determine the AstroDataTypes of datasets.

5.3.2 Local Calibration Service

The Fits Storage service will be delivered as part of a future release and will provide the calibration management
and association features of Fits Storage: for use with the public release of the gemini_python data reduction package.
This feature will provide automatic calibration selection for both pipeline (recipe) operations and in an interactive
processing environment.

24 Chapter 5. Discussion

CHAPTER
SIX

6. ACKNOWLEDGMENTS

The Gemini Observatory is operated by the Association of Universities for Research in Astronomy (AURA), Inc.,
under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Founda-
tion (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Coun-
cil (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia
(Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina).

25

reduce Users Manual, Release X1.0.1

26

Chapter 6. 6. Acknowledgments

APPENDIX
A

REDUCE DEMO

Original demo author: Kathleen Labrie, October 2014

A.1 Setting up

First install Ureka, which can be obtained at http://ssb.stsci.edu/ureka/.

The second step is to install gemini_python as described in Section 2 - Installation. Please do make sure that
the command reduce is in your PATH and that PYTHONPATH includes the location where the modules astrodata,
astrodata_FITS, astrodata_Gemini, and gempy are installed.

The demo data is distributed separately. You can find the demo data package
gemini_python_datapkg—-X1l.tar.gz on the Gemini website where you found the gemini_python package.
Unpack the data package somewhere convenient:

tar xvzf gemini_python_datapkg-Xl.tar.gz

In there, you will find a subdirectory named data_for_reduce_demo. Those are the data we will use here. You
will also find an empty directory called playground. This is your playground. The instructions in this demo assume
that you are running the reduce command from that directory. There is no requirements to run reduce from that
directory, but if you want to follow the demo to the letter, this is where you should be for all the paths to work.

A.2 Introduction to the Demo

In this demo, we will reduce a simple dither-on-source GMOS imaging sequence. We will first process the raw biases,
and then the raw twilight flats. We will then use those processed files to process and stack the science observation.

Instead of the default Quality Assessment (QA) recipe that is used at the Gemini summits, we will use another recipe
that will focus on the reduction rather than on the multiple measurements of the QA metrics used at night. QA metrics,
here the image quality (IQ), will only be measured at the end of the reduction rather than throughout the reduction.
Another difference between the standard QA recipe and the demo recipe, is that the demo recipe does stack the data,
while the stacking is turned off in the QA context.

The demo recipe is essentially a Quick Look recipe. It is NOT valid for Science Quality. Remember that what you are
using is a QA pipeline, not a Science pipeline.

A.3 The Recipes

To process the biases and the flats we will be using the standard recipes. The system will be able to pick those
automatically when it recognizes the input data as GMOS biases and GMOS twilight flats.

27

http://ssb.stsci.edu/ureka/

reduce Users Manual, Release X1.0.1

For the science data, we will override the recipe selection to use the Demo recipe. If we were not to override the recipe
selection, the system would automatically select the QA recipe. The Demo recipe is more representative of a standard
Quick-Look reduction with stacking, hence probably more interesting to the reader.

The standard recipe to process GMOS biases is named recipe.makeProcessedBias and contains these instruc-
tions:

This recipe performs the standardization and corrections needed to convert
the raw input bias images into a single stacked bias image. This output

processed bias is stored on disk using storeProcessedBias and has a name

equal to the name of the first input bias image with " _bias.fits" appended.

prepare

addDQ

addVAR (read_noise=True)
overscanCorrect

addToList (purpose="forStack")
getList (purpose="forStack")
stackFrames
storeProcessedBias

The standard recipe to process GMOS twilight flats is named recipe.makeProcessedFlat . GMOS_IMAGE and
contains these instructions:

This recipe performs the standardization and corrections needed to convert
the raw input flat images into a single stacked and normalized flat image.
This output processed flat is stored on disk using storeProcessedFlat and
has a name equal to the name of the first input flat image with "_flat.fits"
appended.

HH R HH KR

prepare

addDQ

addVAR (read_noise=True)
display

overscanCorrect
biasCorrect

ADUToElectrons

addVAR (poisson_noise=True)
addToList (purpose="forStack")
getList (purpose="forStack")
stackFlats

normalizeFlat
storeProcessedFlat

The Demo recipe is named recipe . reduceDemo and contains these instructions:

recipe.reduceDemo

prepare

addDQ

addVAR (read_noise=True)
overscanCorrect
biasCorrect
ADUToElectrons

addVAR (poisson_noise=True)
flatCorrect

makeFringe
fringeCorrect
mosaicDetectors
detectSources

28 Appendix A. reduce demo

reduce Users Manual, Release X1.0.1

addToList (purpose=forStack)
getList (purpose=forStack)
alignAndStack
detectSources

measurelQ

For the curious, the standard bias and flat recipes are found in astrodata_Gemini/RECIPES_Gemini/ and the
demo recipe is in astrodata_Gemini/RECIPES_Gemini/demos/. You do not really need that information
as the system will find them on its own.

A.4 The Demo

The images will be displayed at times. Therefore, start ds9:

ds9 &

A.4.1 The Processed Bias

The first step is to create the processed bias. We are using the standard recipe. The system will recognize the inputs as
GMOS biases and call the appropriate recipe automatically.

The biases were taken on different dates around the time of the science observations. For convenience, we will use
a file with the list of datasets as input instead of listing all the input datasets individually. We will use a tool named
typewalk to painlessly create the list.

cd <your_path>/gemini_python_datapkg-X1l/playground
typewalk —--types GMOS_BIAS --dir ../data_for_reduce_demo -o bias.list
reduce @bias.list

This creates the processed bias, N2012020250955_bias.fits. The output suffix _bias is the indicator that
this is a processed bias. All processed calibrations are also stored in . /calibrations/storedcals/ for safe
keeping.

If you wish to see what the processed bias looks like:
reduce N20120202S0955_bias.fits -r display
Note: This will issue an error about the file already existing. Ignore it. The explanation of what is going on is beyond

the scope of this demo. We will fix this, eventually. Remember that this is a release of software meant for internal use;
there are still plenty of issues to be resolved.

A.4.2 The Processed Flat

Next we create a processed flat. We will use the processed bias we have just created. The system will recognize the
inputs as GMOS twilight flats and call the appropriate recipe automatically.

The “public” RecipeSystem does not yet have a Local Calibration Server. Therefore, we will need to specify the
processed bias we want to use on the reduce command line. For information only, internally the QA pipeline at the
summit uses a central calibration server and the most appropriate processed calibrations available are selected and
retrieved automatically. We hope to be able to offer a “local”, end-user version of this system in the future. For now,
calibrations must be specified on the command line.

For the flats, we do not really need a list, we can use wild cards:

A.4. The Demo 29

reduce Users Manual, Release X1.0.1

reduce ../data_for_reduce_demo/N20120123*.fits \
——override_cal processed_bias:N20120202S0955_bias.fits \
-p clobber=True

This creates the processed flat, N2012012350123_flat.fits. The output suffix _flat is the indictor that this
is a processed flat. The processed flat is also stored in . /calibrations/storedcals/ for safe keeping.

The clobber parameter is set to True to allow the system to overwrite the final output. By default, the system refuses
to overwrite an output file.

If you wish to see what the processed flat looks like:

reduce N20120123S0123_flat.fits -r display

A.4.3 The Science Frames

We now have all the pieces required to reduce the science frames. This time, instead of using the standard QA recipe,
we will use the Demo recipe. Again, we will specify the processed calibrations, bias and flat, we wish to use.

reduce ../data_for_reduce_demo/N2012020350287?.fits \
——override_cal processed_bias:N20120202S0955_bias.fits \
processed_f1lat:N20120123S0123_flat.fits \
-r reduceDemo \
-p clobber=True

The demo data was obtained with the z’ filter, therefore the images contain fringing. The makeFringe and
fringeCorrect primitives are filter-aware, they will do something only when the data is from a filter that pro-
duces fringing, like the z’ filter. The processed fringe that is created is stored with the other processed calibrations in
./calibrations/storedcals/ anditis named N20120203S0281_fringe.fits. The _fringe suffix
indicates a processed fringe.

The last primitive in the recipe is measureIQ which is one of the QA metrics primitives used at night by the QA
pipeline. The primitive selects stars in the field and measures the average seeing and ellipticity. The image it runs on
is displayed and the selected stars are circled for visual inspections.

The fully processed stacked science image is N20120203S0281_igMeasured. fits. By default, the suffix of
the final image is set by the last primitive run on the data, in this case measureIQ.

This default naming can be confusing. If you wish to set the suffix of the final image yourself, use ——suffix
_myfinalsuffix.

A.4.4 Clean up

It is good practice to reset the RecipeSystem state when you are done:

superclean —--safe

Your files will stay there, only some hidden RecipeSystem directories and files will be deleted.

A.5 Limitations

The X1 version of the RecipeSystem has not been vetted for Science Quality. Use ONLY for quick look purposes.

30 Appendix A. reduce demo

reduce Users Manual, Release X1.0.1

The RecipeSystem currently does not handle memory usage in a very smart way. The number of files one can pass
on to reduce is directly limited by the memory of the user’s computer. This demo ran successfully on a Mac laptop
with 4 GB of memory.

A.5. Limitations 31

	Introduction
	Installation
	Interfaces
	Supplemental tools
	Discussion
	6. Acknowledgments
	reduce demo

