
gempy/science/extract.py

- trace_slits ULF
- _find_edges
- _fit_edges
- _associate_edges
- Slit class
- SlitsTrace class

gempy/segmentation.py

- Edge class
- TraceConstraints class
- trace_edges
- "apply edge enhancing filter"

Modules

gempy/segmentation.py

Edge

setfunction : set function, check that it is valid
setorder : based on function and order, also set length
 of coefficients
setdimension
fitfunction : fit function to trace
evalfunction : evaluate function and return x,y(,z,...)
[plot : future feature]

trace : x,y(,z,..) coordinates of the trace
function : name of the function being fit to the trace
order : order of the function
coefficients : array of coefficients
dimension : dimensionality of the edge

setorientation
setfilter

orientation : general orientation of the edges
filter : filter applied for edge enhancement
Other attributes to support multiple slits per line TBD

TraceConstraints

Classes – segmentation module

TraceConstraints

Get data-dependent information needed for edge tracing and store in standard
variables that will allow the edge tracing to be instrument agnostic.

Initialize:
 The class is initialize from an Astrodata object. The filter can be passed as
 an argument. The orientation is set automatically based on the dispersion
 axis.

Attributes:
 orientation: General orientation of the slit edges.
 In degrees. 0 is horizontal, 90 is vertical.
 filter: Filter to applied for edge enhancement. [Default: Sobel]
 Allowed/implemented filters: Sobel.

Methods:
 setorientation: Just set the orientation to the value of the argument.
 setfilter: Set the filter to the value of the argument but first check to make sure
 the filter is in the supported list.

Classes – TraceConstraints

Edge

Describes an edge as traced and as fit.

Initialize:
 The class is initialize from an Astrodata object. The filter can be passed as
 an argument. The orientation is set automatically based on the dispersion
 axis.

Attributes:
 trace: x,y(,z) coordinates of the edge trace
 function: Name of the function being fit to the trace.
 order: Order of the function.
 coefficients: Solution to the fit. Array of coefficients.
 dimension: Dimensionality of the edge. 0 for points, 1 for line, 2 for plane.

Methods:
 setfunction: Set the function to the value of the argument but first check to
 make sure the function is in the supported list.
 setorder: Set the function's order. Also based on the function and order,
 set the length of the coefficients attribute.
 setdimension: Set the dimensionality of the edge to the value of the argument
 but first check that the value is an integer in the 0-2 range.
 fitfunction: Fit the function to the trace.
 evalfunction: Evaluate the function and return x,y(,z) data points. Do NOT
 overwrite the trace, just return the coordinates that represent
 the function associated with the Edge. Obviously, this can only
 work after a successful fitfunction call.
 [plot: future feature]

Classes – Edge

gempy/science/extract.py

gempy/segmentation.py

Edge

setfunction : set function, check that it is valid
setorder : based on function and order, also set length
 of coefficients
setdimension
fitfunction : fit function to trace
evalfunction : evaluate function and return x,y(,z,...)
[plot : future feature]

trace : x,y(,z,..) coordinates of the trace
function : name of the function being fit to the trace
order : order of the function
coefficients : array of coefficients
dimension : 1 for point, 2 for line (default), 3 for plane

setregion : default can be derived from Edge objects.
 Arguments x1,x2,y1,y2 set to None.
[plot : future feature]
[plotregion : future feature]

id : just some numbering
region : section of the image where the slit solution is
 valid. (x1,x2,y1,y2)
edges : Two Edge objects defining the long edges of
 the slit.
width : average width of the slit (calculated with the
 edges)

Slit

asbintable
[plot : future feature]

slits
SlitsTrace

Classes

Methods, if any, TBD

Orientation
Other attributes TBD

TraceConstraints

OutputsInputs

OutputInput

Astrodata Object Astrodata Object with slit
trace solution tableULF – trace_slits

_find_edges
Get the edges.

_associate_edges
Group edges into slits
(here can use MDF)

append slits trace to ad object

ad.append(slitstrace.asbintable())
[no need for special function]

List of Edge objects
AstrodataType

MDF
SlitsTrace object

list of Edge objects

ULF – trace_slits

start – trace_slits

stop – trace_slits

prefiltered
Astrodata Object

Astrodata Object with slit
trace solution tableSlitsTrace object

gempy/science/extract.py

_pre_filter
smooth or clip to reduce

noise

COPY of
Astrodata Object

prefiltered
Astrodata Object

list of Edge objects
(with only x,y trace)

list of Edge objects
(with x,y trace)

function
order

_fit_edges
fit each edge with function

list of Edge objects
(with x,y trace and

polynomial solution)

Access instrument constraints like
dispaxis, grating, filter, slit

positions and convert to initial
constraints for trace edges.

Details depend on trace_edges
algorithm.

trace_edges

filtered image
TraceConstraints

 threshold and other
arguments

_find_edges
gempy/science/extract.py

start – _find_edges

stop – _find_edges

enhance_edges
apply edge

enhancing filter

ndarray (ad.data)
filter selection

orientation (dispaxis)
filtered image

Astrodata object TraceConstraints
object

gempy/science/extract.py

_fit_edges

Inputs:
 list of Edge objects (with x,y traces)
 function
 order

Output:
 list of Edge objects with fit coefficients

Design details:

For each edge:
 - set function and order
 - edge.fitfunction()

NOTE: This is done in a separate routine because we might want to add quality checks or an
interactive mode in the future.

To be completed.

The easy way

divide number of edges by 2,
compare with number of slits

expected from MDF

numbers
match

couple the edges into slit objects,
compare width of each slit with

width expected from MDF

Widths
match

Build SlitsTrace object

yes

yes

no

no

some clever
cross-correlation
of the edges with

the MDF to
identify which

edges are real or
missing

gempy/science/extract.py

_associate_edges

start – _associate_edges

stop – _associate_edges

List of Edge objects
AstrodataType

MDF

SlitsTrace object

gempy/science/extract.py

SlitsTrace.asbintable

cutcoeff2_N

4E ??

%dE

4E ??

cutfunction1

J

cutorder2

4E ??

order1

15A

%dE

function2

cutregion1

cutfunction2

region1

cutcoeff1_1

J

coeff2_N

%dE

Column ID

order2

4E ??

15A

id

%dE

coeff2_1

Description

J

cutregion2

J

coeff1_1

%dE

cutcoeff2_1

15A

function1

Format

cutcoeff1_N

region2

15A

%dE

J

%dE

coeff1_N

%dE

cutorder1

Write the slit trace solution to a FITS binary table.

This is a method of the SlitsTrace class. Takes self as input. Returns the bintable.

Design details:

First version assumes no slit overlapping. Minimum requirements:
- Orientation (from TraceConstraints object)
- Threshold in units of sigma

NOTE: trace edges does not care about matching edges to form slits.
NOTE: list of input arguments depends on the algorithm used.

If multiple slits per line is to be supported, the problem is a lot more complex. The easiest
implementation will require initial conditions. The first version we will not attack this problem.
But this is where the upgrade will go.

To be completed. Suggested tools: ndimage.label and ndimage.find_object.

gempy/segmentation.py

trace_edges

Inputs:
 filtered image
 TraceConstraints object
 threshold in units of sigma
 other arguments as necessary depending on design

Output:
 List of Edge objects with the x,y trace only. (no fitting yet)

(replaces "locate_slit_edges" from old design)

gempy/segmentation.py

enhance_edges

Inputs:
 ndarray
 filter to use (default: Sobel)
 orientation (in degrees. default: 0)

Output:
 filter image as an ndarray

Design details:

To be completed.

(replaces "generate_edges" from old design)

gempy/segmentation.py

Edge.fitfunction
(replaces "fit_edges" from old design)

Inputs:
 self
 function (default: self.function)
 order (default: self.order)
 dimension (default: self.dimension)

Output:
 Edge object with fit coefficients.

Design details:

To be completed.

