Adaptive Optics at W. M. Keck Observatory

Mark Morris & Peter Wizinowich with contributions from Claire Max and Tuan Do June, 2012

Photo Credit: Andrew Cooper

Science Impact Performance Performance Limitations Recent Developments in Keck AO

Science Productivity

3

Science Productivity

4

Keck LGS Science Demand & Efficiency

Galactic Center with Keck LGS AO

Limitation = Source Confusion \rightarrow PSF

Where are the two black holes after a gas-rich galaxy merger?

- Observe ULIRGs in latestage mergers

 Medling and Max, UCSC
- Look for kinematic or spectral signatures of supermassive black holes with OSIRIS IFU and Keck LGS AO
- Example: Mrk 273

Does the North sub-nucleus host a black hole at the center of its disk?

• Estimate enclosed mass (potential BH) in north disk from [Fe II] velocity field within BH sphere of influence

• Best fit:
$$M_{BH} = (2 \pm 1) \times 10^9 M_{sur}$$

LGS AO Performance Variability

2005-07 Survey of field brown dwarfs (Liu et al.)

- No data censored. Mix of seeing conditions, off-axis tip-tilt properties & technical performance
- ~2/3 sky coverage with 60" off-axis radius & Strehl >~ 0.2

What's Limiting Science Performance?

Error Term	KII Dye Laser		
Atmospheric Fitting	122		
Telescope Fitting	66		
Science Camera	110		
DM Bandwidth	182		heacon
DM Measurement	216		ocacon
Tip-tilt Bandwidth	247	-> Tin t	ilt concor
Tip-tilt Measurement	214	- mp-	III SEIISOI
Tip-tilt Anisoplanatism	115	TOO	•
LGS Focus Error	70	> LGS	asterism
Focus Anisoplanatism	181		
LGS High Order Error	80		Dlug lock of DS
Calibration Errors	30		I IUS IACK OF I SI
Miscellaneous	73		knowledge
Total Wavefront Error	531 nm		
K-band Strehl	0.10		
Science Case Parameters	2MASS 1534-	Galactic	
	2952AB	Center	
NGS R-magnitude	16.2	14	
NGS off-axis distance (")	31	19.3	
Zenith angle (deg)	50	50	The second s

AO System Developments at Keck

Left Nasmyth Platform

Keck Side & Center Launch

) O arcsec

Side launch Keck II

Center launch Keck I

Keck II Center Launch 1st science 2014

- PDR completed in October 2010
- Launch telescope DDR in April 2011
- Launch telescope currently being assembled

Laser Implementation

10x Return

Crafoord Prize to Ghez and Genzel

- 2012 Crafoord Prize in Astronomy has been awarded to Andrea Ghez and Reinhard Genzel
- Two competing teams discovered supermassive black hole at Galactic Center
- All of Ghez's observations of Galactic Center are from Keck adaptive optics and speckle
- Endorsement that adaptive optics is a key astronomical technique

Benefit of Center Launch + new Laser

Current Laser Galactic Center Simulations Center + New Laser Relative Strehl ratio improvement of a factor 1.5 - 2.5! 27

0%

10%

2094

- K1 STRAP 4 mas jitter

30%

40%

50%

Sky Fraction

-E-K1 TRICK H

60%

70%

20.%

-----K1 TRICK Ks

90%

100%

29

PSF Determination

- Ground work
 - MASS-DIMM + AO telemetry
- Bright on-axis NGS case
 - AquilAOptics, Gemini, Groningen & Keck collaboration
 - + working to understand Keck AO low order aberrations

- Off-axis NGS & LGS case
 UCLA, tOSC, Keck collaboration funded by WMKF
- On-axis LGS case (+ faint NGS)
 - ATI-funded project to start in Aug/2012.

NGAO - Next Generation AO

Key Science Goals

Understanding the Formation and Evolution of Today's Galaxies since z=3 Measuring Dark Matter in our Galaxy and Beyond Testing the Theory of General Relativity in the Galactic Center Understanding the Formation of Planetary Systems around Nearby Stars Exploring the Origins of Our Solar System

Key New Science Capabilities
 Near Diffraction-Limited in Near-IR (K-Strehl ~80%)
 AO correction at Red Wavelengths (0.7-1.0 μm)
 Increased Sky Coverage
 Improved Angular Resolution, Sensitivity and Contrast
 Improved Photometric and Astrometric Accuracy
 Imaging and Integral Field Spectroscopy

NGAO on Nasmyth Platform

PDR in June 2010; NSF TSIP funded

Sky coverage of NGAO is dramatically better than Keck 2 LGS AO !

Galaxy Assembly science case (b=60) Median seeing, sodium return a bit worse than average

Sky Coverage is a Trade-off with Spatial Resolution

- NGAO: require three natural guide stars within a field 2 arc min in diameter.
- If these guide stars are farther away or fainter, the tip-tilt, focus, and astigmatism corrections degrade.
- But you are still left with very good <u>high-order</u> Strehl.
- Consequence: broader core of the PSF, but core contains same fraction of energy.

The key to NGAO' s large sky coverage is AO correction of tip-tilt stars in the infrared

NGAO will change Keck AO observing experience

Monte Carlo performance estimate simulating 44 nights observing (Galaxy Assembly science case), drawing random values for r₀, wind speed, sodium abundance, and zenith angle (KAON 716, Figure 12)

Includes comparison with M. Liu's measured K2 LGS data (<SR> = 17%), the model prediction for K2 LGS (<SR> = 20%), and NGAO model prediction (<SR> = 70%) 36

Credit: Andrew Cooper