

Potential of Present & Future AO Systems for Planetary Sciences

F. Marchis (SETI Institute)

June 20 2012, GNAO Science Workshop, Victoria, BC

52 Years **Outer Solar System** of Space Missions

Outline

- 3 science cases
 - Small Solar System Bodies, Observability, Size & Shape, Comparative Spectroscopy
 - Satellites of Giant Planets, e.g. lo
 - Jupiter Atmosphere, challenging observation, MAD
- Future Gemini North AO
 - Instruments
 - AO requirements

Case I - Small Solar System Bodies

- Building blocks of the Solar System linked to its formation
- 586,571 known minor planets (a.k.a. with a characterized orbit) on June 19 2012
- Small apparent size (largest is 1 Ceres, D_{app}=0.7arcsec -> "seeing" limit)

"Like archaeologists working to translate stone carvings left behind by ancient civilizations, the collisional and dynamical clues left behind in or derived from the Main₃ Belt, once proper Lyminterpreted, can be used to read the history of the inner Solar NEAR 2000 System." Bottke et al 2005

253 Mathilde - 66 × 48 × 44 km NEAR, 1997 951 Gaspra - 18.2 × 10.5 × 8.9 km Galileo, 1991 21 Lutetia - 132 × 101 × 76 km Rosetta, 2010

1P/Halley - 16 × 8 × 8 km Vega 2, 1986

19P/Borrelly 8 × 4 km Deep Space 1, 2001

 9P/Tempel 1
 81P/Wild 2

 7.6 × 4.9 km
 5.5 × 4.0 × 3.3 km

 Deep Impact, 2005
 Stardust, 2004

I. Internal Structure & Composition

- Internal structure & density (thus composition) of asteroids is unknown
- They influence:
 - •The evolution of an asteroid (orbit, spin, shape, multiplicity)
 - •The result of an impact (fragmentation, crater shape, size distribution)
 - •The alteration of the surface due to space environment

~80 can be visualized with AO , HST, or Radar

~25 observable with current NGS (d>0.3", Dm<5 mag), ~20 with LGS on 8-10m class telescopes (d>0.3", Dm<4 mag)

→ Mass, Density→Collisional History → Formation of Solar System

I. Virtual Observatory Binary Asteroid Database (VOBAD)

I. Triple Main-Belt Asteroid Systems

Formation of MBA triple systems

A catastrophic impact produced the disruption of a parent asteroid, follow by gravitational reaccumulation

->Simulation by 3D particle hydrodynamics, then N-body code

•Outcome of the simulation:

 ✓ Irregular primary with rubble-pile structure R_p ~ 100 km
 ✓ Small moonlet R_s~ a few km close to the primary (3-6x R_p) describing a circular and equatorial orbit (due to damping by tidal effect)
 ✓ Multiple systems (less than 5%)

I. Argot in the Asteroid field

- **Size, Albedo** combining *radiometric* data (Far IR with IRAS or SPITZER) + visible
- Pole solution (orientation of spinning pole) and shape by *lightcurve* observations (Kaasalainen et al.)
- **Surface composition** by *taxonomic classes* C-type (carbonaceous), S-type (Silicate), M-type (Metallic), ...
- Age estimated in a few cases (if member of a collisional families)

I. Small Solar System Bodies "Observability"

• What is this?

- When the brightness of an asteroid is sufficient to be used as a guiding for the Tip-tilt or AO wavefront sensing.
- How many and which asteroids will be observable with future AO systems per population
- Why?
 - Direct imaging of an asteroid to estimate its size/shape/multiplicity/composition
 - Use of asteroids to increase the sky coverage
- Simulations
 - Calculation of apparent magnitudes of all SSSBs from the ASTORB table (586571 on June 18 2012) between Jan 2012 and Sep 2021 (step of 7 days)
 - 5 types of AO were considered:
 - V_{lim} < 10.5, d<6", solar elongation>60, airmass<2.0 (eq. to GPI at Gemini South)
 - V_{lim} < 14.0, d<20", solar elongation>60, airmass<2.0 (eq. to ALTAIR Gemini North NGS)
 - V_{lim} < 15.0 d<20", solar elongation>60, airmass<2.0 (eq. to Keck II AO & VLT-NACO)
 - V_{lim} < 18.5 d<25", solar elongation>60, airmass<1.6 (eq. to ALTAIR Gemini North LGS)
 - V_{lim} < 19.0 d<72", solar elongation>60, airmass<1.8 ((eq. to Keck II AO LGS)

I. Small Solar System Bodies "Observability"

Number of SSSBs observable per night - GPI ~8 (MBAs) -ALTAIR NGS ~ 210 (MBAs) -Keck/VLT NGS ~ 450 (+ 1-3 Trojans) -ALTAIR LGS ~15,000 -KECK LGS ~27,000

Small Solar System Bodies "Observability"

Jan 2012-Sep 2021	NEAs	MBAs	Trojan	Outer	Total per AOs
Total per population	18748	555,956	5245	1774	586,571
GPI V _{lim} <10.5	2/0.01%	84/0.02%	0/0%	0/0%	86/0.01%
ALTAIR NGS V _{lim} <14.	60/0.32%	1259/0.23%	1/0.02%	0/0%	1337/0.22%
Keck/VLT NGS V _{lim} <15.	223/1.19%	3413/0.61%	7/0.13%	2/0.11%	3690/0.63%
ALTAIR LGS V _{lim} <18.5	5874/31.3%	167,398/30.1%	596/11.4%	16/0.9%	174,953/29.8%
Keck/VLT NGS V _{lim} <19.0	8504/44.5%	250,197/45.0%	965/18.4%	27/1.5%	261,139/44.5%

•Already observed based on our survey (VOBAD database)

- •With AO ~1340 observations of 501 SSSBs: 44 NEAs, 402 MBAs, 62 Jupiter-Trojan, 1 Centaur, 2 TNOs
- With HST ~600 observations of 500 SSSBs: 60 NEAs, 150 MBAs, 30 Jupiter-Trojan, 20 Centaurs, ~240 KBOs
- AO with V_{lim} >18.5 -> ~1/3 of the MBAs & NEAs are observable
- Number of TNOs, the more distant population, remains low (less than 2%, 27 targets)

Size, Shape, Surface Mapping, Atmosphere of TNOs

Population of 1,774 Minor planets orbiting at 30+ AU made of mixture of ices and rock. vis/NIR spectra of the surface -> water ice, amorphous carbon, organic, and silicates.

Name	Diameter	а	ang.	#elt of res	#elt of res	#elt of res
	km	AU	mas	with 40 mas	with 18 mas	with 7 mas
Pluto	2320	39.4	81	2	4	11
Makemake	1500	80	26	<1	2	4
Haumea	1150	84	19	<1	<1	3
Charon	1205	39.4	42	<1	2	6
Orcus	950	39.4	33	<1	2	5
Quaoar	844	43.5	27	<1	2	4
Ixion	650	39.6	23	<1	<1	3
2002AW197	730	47.4	21	<1	<1	3
2002UX25	681	42.5	22	<1	<1	3
Varuna	500	43	16	<1	<1	2
2002MS4	762	42	25	<1	2	4
2003AZ84	685	39.6	24	<1	<1	3

Scientific Objectives with a 8m-telescope:

- -Detect small satellites and follow up their orbits
- -Determine their size and shape (6 of them)

Outstanding Questions (Pre-New Horizons):

- Cryovolcanism on TNOs
- Bulk density and interior structure of the most primitive planetesimals

SSSBs

expanding the "Observability" of TNOs

Jan 2012-Sep 2021	Outer	Outer By Appulse
Total per population	1774	1774
GPI V _{lim} <10.5	0/0%	98/6%
ALTAIR NGS V _{lim} <14.	0/0%	652/37%
Keck/VLT NGS V _{lim} <15.	2/0.11%	653/37%
ALTAIR LGS V _{lim} <18.5	16/0.9%	>662/37%
Keck/VLT NGS V _{lim} <19.	27/1.5%	>692/39%

>1/3 of TNOs can be observed (V_{TNOs} ~22.9 & V_{star} <15)

Appulse calculated using USNO-A2.0 catalog -Incomplete for V>16 -Need for a model of galaxy for proper comparison

I. Shape & Size of Asteroids The Case of 624 Hektor

The case of (624) Hektor:

- Largest Trojan Asteroids D~220 km, V=14.5-15.5
- Moon discovered with Keck LGS, and follow up with Keck NGS

Hektor I (moon)

12 astrometric positions
angular separation ~0.22-0.36"
D_{sat} ~ 12 ± 3 km (assum. same p_v)
Hektor primary
Resolved (D_{max}=111-177 mas)
distance 4.34-5.50 AU

Satellite (0.3", Dm~4) is barely detectable -> astrometric error ~12 mas

What is the real shape of (624) Hektor Primary?

I. Shape & Size of Asteroids Simulations

• Library of PSFs

- (1) TY2-19192151 2003-12-07 by UCLA IR Lab Team FWHM=44 mas
- (2) (2) PSF_Fell 2009-08-16 by F. Marchis FWHM=41 mas
- (3) PSF_Frede Fell 2011-11-10 by F. Marchis FWHM=41 mas
- (4) PSF_Fell 2011-11-11 by F. Marchis FWHM=41 mas
- (5) PSF_Hektor2 2006-08-03 by F. Marchis FWHM = 99 mas
- (6) PSF_Hektor 2006-08-03 by F. Marchis FWHM = 112 mas
- (7) PSF_Leontheus2 2006-08-03 by F. Marchis FWHM = 87 mas
- (8) PSF_Leontheus 2006-08-03 by F. Marchis FWHM = 69 mas
- MC simulations of an ellipsoidal asteroid (2a=1.2, 2b=1.1, 2c=0.8)
 - SNR from 100 to 2100
 - Angular size from 20 mas to 420 mas
 - Orientation from 0 deg to 80 deg
 - Scattering by Minnaert law with k_{min} from 0.4 to 0.8

VIDEO?

I. Shape & Size of Asteroids Simulations

- Errors on size varies with the quality of the AO systems
 - low SR<20% -> error(2 elts of res) = 28% with 1-sigma = 10%
 - High SR>40% -> error(2 elts of res) = 0% with 1-sigma = 5%
 - Error(3 elts of res) is ALWAYS less than 10%

I. Shape & Size of Asteroids Simulations

- Errors on Orientation varies with the quality of the AO systems
 - low SR<20% -> error(<6 elts of res) = 20 deg with 1-sigma uncertainty = 15 deg
 - High SR>50% -> error(3+ elts of res) ~0 deg with 1-sigma uncertainty = 8 deg

I.Shape & Size of Asteroids Hektor Primary

 $D_{eq} = 250 \pm 30 \text{ km} => \text{ density} = 1.0 \pm 0.4 \text{ g/cm}^3$

High performance (SR>50%) on faint target (V>15 mag) to estimate the real shape & size of 624 Hektor, hence reduce the error on the density.

I. Spectroscopic Comparative Study Binary Asteroids

- SINFONI@ VLT NACO (Antiope, Marchis et al. 2011)
- OSIRIS@ Keck AO (Kalliope, Laver et al. 2009)

90 Antiope, double asteroid:

- Two components D~86km
- low density ~1.3 g/cc, porosity>50%
- puzzling binary system,
 formation scenario still
 unknown
- -Orbit known -> scheduled obs at maximum elongation

same NIR spectra
=> formed at the same time
from the same material.
=> mutual capture scenario can
be rejected

II & III. Giant Planet Systems

Edit View

(q m s)

nation (

8

Moons	Vmag	Dmax
Metis	17.5	60
Adrastea	19.1	20
Amalthea	14.1	250
Thebe	15.7	116
Io	5.0	3660
Europa	5.3	3122
Ganymede	5.5	5262
Callisto	5.7	4820
Leda	20.2	16
Himalia	14.8	170
Lysithea	18.3	36
Elara	16.8	86
Ananke	18.9	28
Carme	17.8	46
Pasiphae	16.9	60
Sinope	18.3	38
% of	resolved moons	
With	total known	moons = 66
%	of	Guiding-Moons
With	Vlim=10.5	6%
With	Vlim=14.0	6%
With	Vlim=15.0	9%
With	Vlim=17.0	14%
With	Vlim=18.5	20%

With V_{lim}=17.

7 05 40 Riq resolvable moons can be used as s guider
 Jupiter/Saturn atmosphere/rings can be observed permanently

-Science Objectives for Satellites

- Shape & Size
- Surface composition
- Activity monitoring (weather, volcanism,

geyser)

-Orbit determination (Uranus, Neptune satellites)

%

With

With

With

With

With

of

Vlim=10.5

Vlim=14.0

Vlim=15.0

Vlim=17.0

Vlim=18.5

20%

		-
		-
		-
		_
		-
		-
		-
		-
		-
14 21 35 ension (h m s)	14 21 30	هم نما.
#_of_elts	#_of_elts	#_of_elts
(res=40mas)	(res=18mas)	(res=7mas
<1	<1	~2
<1	<1	1
<1	1	3
<1	<1	2
<1	1	3
<1	1	4

() (■)

	(res=40mas)	(res=18mas)	(res=7mas)
	<1	<1	~2
	<1	<1	1
	<1	1	3
	<1	<1	2
	<1	1	3
	<1	1	4
	2	4	9
nism.	2	4	11
, ,	4	9	24
	<1	<1	~1
	<1	<1	~1
	4	10	25
ino	<1	<1	~1
JIIE	6	13	34
	20	44	114
	1	3	8
	6	13	33
	<1	2	5
	<1	<1	~1
	13%	20%	31%
Guiding-Moons			
3%			
11%			
13%			
20%			

Case II. Satellites of Giant Planets Study of Io Volcanism

Feb 2001 Keck AO obs

Io in a nutshell: V~5, ang size=1.2", innermost Galilean satellite, most volcanic place due to resonance with other Galilean satellites

->Spatial resolution 125 -250 km with Keck AO at 1.6 um

Scientific Objectives:

- Monitoring of individual volcanoes
- Temperature and type of volcanic activities (fire fountaining, lava lake, lava field)
- Thermal Output of Io and its evolution

Snapshot of Io in Lp with Keck (Dec 2001)

inding Questions:

- Highest temperature of lava (sulfuric T<1000K, mafic T<1450K, ultra-mafic T>1500 K?) & Interior of Io (Ocean of magma, partially differentiated?)
- Understanding the evolution of Io into the Laplace resonance
- Potential for life in Europa and around exomoons (Exovolcanism)

II. Observing Io in Eclipse

A challenging and exciting observation!

• Io mv >21 (no sunlight reflection)

 NGS source? a close and moving galilean satellite -> integration time is limited , ~2 opportunities per year

Observed at 2.2 vm, with Keck II + NIRSPAO on Nov. 12 2002

- •19 active centers were detected in H, K, L, and M bands
- •Small thermal total output

(de Pater et al., Icarus, 2007)

II. Awakening of Tvashtar

•Tvashtar eruption was observed by Galileo spacecraft in Nov 1999

- •No detection from Keck in 2001-2004
- •Awakening in April 2006 observed with Keck/OSIRIS

T_{color} = 1240 ± 4 K over 60 km² -> Basaltic lava No emission/absorption features visible. (Laver et al. 2008)

Case III: Jupiter in the near infrared

Jupiter: 1995 July 27 NASA Infrared Telescope Facility

 $3.8\,\mu\mathrm{m}$

 $4.85\,\mu\mathrm{m}$

H band (1.6 υm): cloud features K band (2.2 υm): haze L band (3.7 υm): Aurora emissions M band (4.6 υm): hot region

III. AO Observations of Jupiter atmosphere

D_{ang}(Jupiter)~45"

-> need for guide star reference (satellite or LGS)

-> Tip-tilt reference (one Galilean satellite mv=5-6)

III. Red spot Jr. observed by Keck AO

1.58 υm

1.65 vm

Limited period of obs (less than 1h) -> No velocity fields recorded

Could we use an MCAO?

5 vm

III. Jupiter observations

- Observations proposed for the 3rd Science demonstration run for MAD (PI: F. Marchis)
- Io and Europa used as Natural Guide "Star" on each side of Jupiter. No red Spots unfortunately.
- 265 frames recorded from 23:41 to 01:32 UT (2008 Aug 16/17)
- Observations at 2.02, 2.14. And 2.16 υ m into the CH₄ absorption band

III. Geometry of the observations

Io emerged from eclipse at 23:24 UT $m_v(io)=5.2$ $m_v(Europa)=5.4$

Europa closed to Jupiter limb at 01:32 UT

III. Multi-filter observations

Basic-processed images (FF, badpix, sky) in three narrow filters

Filter BrG (10s) 2.158 (+0.013, -0.005)

Filter K (2s) 2.024 (+0.024, -0.054)

Filter Kc (10s) 2.142 (+0.011, -0.009)

Deprojection, normalization

3-color composite image

III. 3-color Composite Color Image of Jupiter

III. Comparison with HST

Mosaic of 4 HST/NICMOS at 2.12 um 2005-03-25 at 15:00 UT Angular resolution ~ 0.21 arcsec Uniform across the FOV and stable in time

One MAD image at 2.02 um 2008-08-17 at 00:30 UT Angular resolution ~0.09 arcsec SR~0.15 variable with time

Changes of the appearance of Jupiter: haze source mechanism?

III. Showing the capabilities of MCAO

To submit candidate images for Back Scatter, visit http://www.physicstoday.org

104 December 2008 Physics Today

www.physicstoday.org

Simultaneous PRs ESO & UC-Berkeley published on Oct 2 2008

- APOD
- National Geographic
- Space.com
- Major Newspapers
- scientific journals (WIRED)
- Physics Today
- and so on...

Future AOs for Planetary Science

• Future AO instruments. My wish list...

- Better angular resolution (Visible AO)
- Better sensitivity (high SR ~70-80%)
- Enhance "observability" $V_{lim} \simeq 17$
- Imaging & spectroscopy observations

Simulated Observation: 17th-mag asteroid with 2 moons Dm~6.5 & 7.5 Simulated with 170 nm rms error Keck-NGAO

Estimates for the difference in binary component magnitude as function of maximum separation for known binary NEA, MBA, TNO (from Walsh, 2009)

Low resolution spectroscopy

- Pyroxene/Olivine Band I and Pyroxene Band II
- Visible wavelength range -> characterize the surface composition

Medium resolution spectroscopy

- Numerous bands of ices (CH₄, H₂O, NH₃)
- Visible wavelength range -> characterize the surface composition

R~1000 spectrum

Next Generation of AOs for Planetary Science

- Satellites of Giant Planets
 - Better stability (->more efficient deconvolution) to characterize atmospheric and volcanic surface changes
 - Medium spectra resolution (R~1000) between 0.8-2.5 vm with IFS to characterize the surfaces and atmosphere (Titan)

Future AOs for Planetary Science

Future Gemini AO I have a dream...

- Asteroids, Shape & Multiplicity
 - Corrected FOV < 2", V_{lim} < 17, SR>70% in K, SR>20% in R band
 - Vis/NIR (0.7-2.5 um) imager at Nyquist sample
 - IFU low Res~100 (complete 1-cube coverage?)

• Satellites of Giant Planets

- Corrected FOV < 3", V_{lim} < 17, SR>70% in K, SR>20% in R
- IR WFS (to minimize the glare contamination from the planets)
- Vis/NIR/Thermal IR (0.7 5 um) imager at Nyquist sample
- IFU (0.8-2.2 um) Res ~1000
- Atmosphere & Rings of Giant Planets
 - Large corrected FOV (>50"), V_{lim} <17, SR=30% in H band
 - IR WFS (to minimize the glare contamination from the planets)
 - Vis/Thermal (1 5 um) imager at Nyquist sample
 - IFU (0.8-2.2 um) Res ~1000

We have the tools to refine the characteristics of your AO system. Ask us...

What's your favorite AO flavor ?

Future Gemini AO

- Take advantage VG seeing to schedule the visible
 AO obs in the Gemini Queue
- Slit spectroscopy for low R is possible
- Polarimetry? Still unclear. GPI/SPHERE?

"Prediction is very difficult, especially if it's about the future. "*Niels Bohr*

X12 more SSSBs in 10 years? New populations? The unexpected? (interstellar interlopers?)

Pan-STARRS

LSST

NGCFHT