Formation of Extrasolar Planets Mike Fitzgerald (UCLA IR Lab)

Gemini North Adaptive Optics Workshop 2012-6-20

Wednesday, June 20, 2012

Planet Formation

Planet Formation

The history planet formation processes is imprinted on the nature and distribution of circumstellar solids.

Circumstellar Disks & Debris

- Asteroid and Kuiper Belts contain primitive remnant bodies
- Collisions and evaporation of these bodies create fresh dust
- Forces alter grain trajectories, creating a disk
- ~15% of nearby stars have detectable dust debris

Circumstellar Disks & Debris

- Asteroid and Kuiper Belts contain primitive remnant bodies
- Collisions and evaporation of these bodies create fresh dust
- Forces alter grain trajectories, creating a disk
- ~15% of nearby stars have detectable dust debris

Planetesimal Dynamics

- Grain growth and solid transport initially tied to gas disk
 - expect compositional gradients
- Dust production is enhanced by stirring
 - recently formed Pluto-sized bodies (e.g. Kenyon & Bromley 2008)
 - inner giant planets' secular perturbations (e.g. Wyatt 2005)
- Migration of planets

Planetesimal Dynamics

 Grain growth and solid transport initially tied to gas disk

• expect compositional gradients

- Dust production is enhanced by stirring
 - recently formed Pluto-sized bodies (e.g. Kenyon & Bromley 2008)
 - inner giant planets' secular perturbations (e.g. Wyatt 2005)
- Migration of planets

Gravitational Perturbations

Wyatt (2006)

Planetesimal trapping in Mean-Motion Resonances

Debris Disk Detection

- Infrared Excess around mainsequence star
- Most excesses can be characterized by single-T blackbody
- Hundreds detected, few resolved in scattered light or thermal emission
- Scattered light is dominated by star

Debris Disk Detection

- Infrared Excess around mainsequence star
- Most excesses can be characterized by single-T blackbody
- Hundreds detected, few resolved in scattered light or thermal emission
- Scattered light is dominated by star

Wyatt (2008)

Sizes of Dust Belts

- Inferred sizes around FGK stars span Solar System scales
 - both asteroidal and cometary type dust
- Sizes inferred from IR excesses often underestimate by factor of ~3

Jewitt et al., Carpenter et al.

Dust Production by Stirring

Kenyon & Bromley (2004)

Debris Disk Structure

- Resolved imaging to break degeneracies between grain properties and disk structure
- Scattered-light imaging requires high contrast
- Thermal imaging requires good sensitivity and angular resolution

Topics Addressed with AO

Location and timing of planet formation
Composition and structure of solids
Giant planet migration mechanisms

Current AO Work

- Imaging in scattered light
 - only bright, dusty systems
 - previously resolved
 - sharp features amenable to PSF subtraction
- Only a handful resolved with AO

Observations

Filtered

PSF Subtracted

AU Mic

• MIV

- 10 pc
- β Pic Moving Group
- 12 Myr (Zuckerman et al 2001)
- $L_{IR}/L_* \sim 5 \times 10^{-4}$

Fitzgerald et al. (2007)

HD 61005

- G3/G5V
- 35 pc
- 40 120 Myr
- $L_{IR}/L_* \sim 2 \times 10^{-3}$
- VLT/NaCo H band
- Detected offset

Buenzli et al. (2011)

HD 15115

- LBT/LMIRcam L' band
- $L_{IR}/L_* \sim 5 \times 10^{-4}$

HR 4796A


```
Thalmann et al. (2012)
```

- Subaru/HiCIAO H band
- $L_{IR}/L_* \sim 5 \times 10^{-3}$
- Detected offset

ExAO Systems (Coming Soon)

• GPI, SPHERE, etc.

• low WFE

bright NGS

polarimetry

• GPI J-K, SPHERE/ZIMPOL 0.5-0.9 um

Dual-Channel Polarimetry

- Simultaneous measurement of two polarization states
- Upstream modulation
- Calibration of instrumental polarization
- Break degeneracies
 between scattering phase function and dust spatial distribution

Dual-Channel Polarimetry

GPI Debris Disks

Wednesday, June 20, 2012

GPI Debris Disks

- contrast gains due to high-order AO and APLC
- increase in contrast by looking in polarized light
- decrease in IWA increases number of accessible systems
- $L_{\rm IR}/L_* \sim 3 \times 10^{-6}$ can produce detectable polarized light

AO Disk Imaging Summary

High Contrast enables detection

- low WFE
- PSF stability
- Scattered light traces dust properties and location
 - 0.5 to 10s of arcseconds

Future Facilities

ALMA

- 0.03" resolution on longest baselines (I AU
 @ 30 pc)
- mapping structures traced by mm grains
- sensitivity to resolved structure will be roughly limited to Spitzer-detected sample

Future Facilities

ALMA

- 0.03" resolution on longest baselines (I AU
 @ 30 pc)
- mapping structures traced by mm grains
- sensitivity to resolved structure will be roughly limited to Spitzer-detected sample

Connection to Future GNAO

- Optimize for:
 - relatively narrow field (<10")
 - NGS
 - low WFE
- Highest contrast with ExAO-like system
 - Save money: bring GPI to GN, or GPI upgrades
 - Exploit 3-5 µm regime
 - 100 nm WFE @ 1.6 μ m \Leftrightarrow 200 nm WFE @ 3 μ m
 - also advantageous for emission from young gas giants
 - better angular resolution than HST

Connection to Future GNAO

Polarimetry is important for contrast

up-looking port

 waveplate before any high-incidence optics (M3) or transmissive optics (dichroic)

- Push toward shorter wavelengths
 - better angular resolution
 - however smaller grains more strongly affected by dynamical perturbations, e.g. radiation pressure
 - poor PSF stability compared to HST