Physics of the Universe: Gravitational Lensing

> Chris Fassnacht UC Davis

The motivation

- The big question:
 - What is dark energy?
- More specifically
 - Obtain independent measurements of cosmological parameters
- The tools
 - gravitational lensing
 - high resolution imaging

Motivation

Key Question: *What is the nature of dark energy? H*₀ is the single most useful complement to CMB parameters for dark energy studies [e.g. Hu 2005, Riess et al. 2009, 2011]

Take-away messages

- A small sample of gravitational lens systems can produce measurements of cosmological parameters with comparable precision to other approaches.
- These lens-based measurements are independent and complementary to the traditional methods.
- The lens-based measurements contain internal checks for systematics
- AO observations are a promising avenue for breaking one of the main degeneracies in the lensing approach

The Tool: Gravitational Lensing

Gravitational Lenses: The Basic Idea

• General relativity: mass can deflect light from its original path

$$\alpha = \frac{4GM}{c^2b} = \frac{2R_s}{b}$$

• Images of the background object will be magnified and distorted.

A high degree of alignment leads to multiple images (strong lensing)

The mass of the lens (roughly) sets the angular separation of the lensed images

Basic Strong Lensing by Galaxies

Strong Lensing 101

- $\Delta t_{tot} = \Delta t_{geom} + \Delta t_{grav}$
- $\Delta t_i = (D_{\Delta t} / c) [(1/2) |\theta_i \beta|^2 \psi(\theta_i)]$
- $D_{\Delta t} = (1+z_1) (D_1 D_s / D_{1s})$

From time delays to cosmology

$$D_{\Delta t} = \frac{c\Delta t}{\frac{1}{2}(\theta - \beta)^2 - \psi(\theta)}$$

- Observables
 - $-\Delta t$, θ , z_l , z_s
- Model
 - $-\beta, \psi(\theta)$
- Cosmology
 - $\mathbf{D}_{\Delta t} = \mathbf{f}(\mathbf{z}_{1}, \mathbf{z}_{s}, \mathbf{H}_{0}, \boldsymbol{\Omega}_{M}, \boldsymbol{\Omega}_{\Lambda}, \mathbf{w})$

Everyday analogy of gravitational lensing

Courtesy of Phil Marshall (Oxford)

Motivation, revisited

- Several methods to break the degeneracies seen in CMB data alone
 - each provides a big improvement when combined with CMB
 - each has (possibly unknown) systematics
- Obtain high-precision measurements with several *independent* methods to test for systematics and improve accuracy
- Lensing is an important part of this effort

$$D_{\Delta t} = \frac{c\Delta t}{\frac{1}{2}(\theta - \beta)^2 - \psi(\theta)}$$

A very brief history of cosmology from lenses

- 1979: First gravitational lens discovered
- 1980s and early 90s:
 - Only a few lenses known.
 - Time delays are very controversial
- Mid 1990s mid 2000s:
 - Dedicated time delay programs produce high-precision measurements
 - Modeling makes unwarranted assumptions, giving big spread in derived values of H_0
- Late 2000s today:
 - Improvements in modeling and data lead to first robust high precision measurements
 - Best case so far: B1608+656 (Suyu et al. 2010)

Measuring Δt in B1608+656

B1608+656 VLA Image

Measuring Δt in B1608+656

• Relative time delays (Fassnacht et al. 1999, 2002) $\Delta t_{AB} = 31.5 \stackrel{+2.0}{_{-1.0}} \text{ days}$ $\Delta t_{CB} = 36.0 \pm 1.5 \text{ days}$

 $\Delta t_{\rm DB} = 77.0 \, {}^{+2.0}_{-1.0} \, {\rm days}$

B1608+656

 $z_{\rm d}$ = 0.63 (Myers et al. 1995) $z_{\rm s}$ = 1.39 (Fassnacht et al. 1996)

B1608+656 provides a good opportunity to measure $D_{\Delta t}$ with high precision

- One of the biggest systematic errors for lenses: *the mass-slope degeneracy*
- This can be broken with high SNR detections of the lensed extended emission in the Einstein ring
- For B1608+656 we did this through deep (20 orbits) HST/ ACS imaging (PI: Fassnacht)

Constraints on Curvature

assuming w = -1

Suyu et al. 2010

Constraints on Dark Energy

assuming flatness

Suyu et al. 2010

Future prospects

- Our simulations have shown that, once systematics have been controlled (e.g., massslope degeneracy), precision on cosmological parameters improves as ~1/sqrt(N)
 - See also Coe & Moustakas (2009), Dobke et al.
 (2009)
- Right now B1608+656 is only system with all required data
- Need to increase the sample size of wellmeasured lenses

Can AO contribute?

- Quick answer: probably yes
- To break mass-slope degeneracy, need to detect arcs/rings at high SNR and *resolve them in the radial direction*
 - => need excellent angular resolution and sensitivity
- Right now, this is being approached with expensive HST observations
- What can AO do with lenses?

SHARP: The Strong-lensing High Angular Resolution Program

Collaborators

- Simona Vegetti (MIT)
- Dave Lagattuta (Swinburne)
- Matt Auger (Cambridge)
- John McKean (ASTRON)
- Leon Koopmans (Kapteyn)

AO vs. Space: B0128+437

F160W, again

> Keck AO K'-band

Lagattuta et al. 2010

AO vs. Space: HE0435-1223

F555W

F814W

F160W

AO vs. Space: B0631+519

AO vs. Space: B0712+472

Fassnacht et al. in prep

AO vs. Space: B1938+666

AO vs. Space: RXJ 1131

HST/ACS F814W

Keck AO Ks

Fassnacht et al. in prep

Fassnacht et al. in prep

Requirements and Wishes

- Diffraction-limited imaging is a must
 - need to resolve the ring in the radial direction
- Must understand the PSF
 - disentangle lens and background source emission
 - We're testing now with Keck AO data, but lack of knowledge of the PSF may be the biggest problem with current data
 - Best if we could reconstruct the PSF from the data
- Small FOV is OK
 - most lens systems are 1-3 arcsec across
 - although bigger FOV can be beneficial if a PSF star is in the field
- We need lots of potential targets, to improve statistics
 - Set by tip-tilt star availability
 - Can we use the quasar images as TT objects?

Summary

- Gravitational lenses provide a powerful probe of cosmology that is independent from more traditional approaches
- AO observations of time delay lenses have the potential to be very important for breaking degeneracies in the modeling.

Spare slides

Constraints on Dark Energy

Comparison to other cosmological probes (68% CL) NB: All assume flat, with w free but time-independent

	$H_0/{\rm kms^{-1}Mpc^{-1}}$		w	
$WMAP5^{a,b}$	74^{+15}_{-14}	20%	$-1.06\substack{+0.41\\-0.42}$	42%
WMAP5+ HST KP ^{a,b,c}	$72.1^{+7.4}_{-7.6}$	10%	$-1.01\substack{+0.23\\-0.22}$	23%
$WMAP5+SN^{a,b,d}$	$69.4^{+1.6}_{-1.7}$	2.3%	$-0.977\substack{+0.065\\-0.064}$	6.5%
$WMAP5+BAO^{a,b,e}$	$73.9^{+4.7}_{-4.8}$	6.6%	$-1.15\substack{+0.21 \\ -0.22}$	22%
$WMAP5 + Riess^{f}$	$74.2 \pm 3.6^{\mathrm{g}}$	5.0%	-1.12 ± 0.12	12%
WMAP5+B1608	${\bf 69.7^{+4.9}_{-5.0}}$	6.9%	$-0.94\substack{+0.17\-0.19}$	$\mathbf{18\%}$

When combined with WMAP5, B1608+656 is
more informative than the *HST* Key Project
comparable to the pre-BOSS BAO data in constraining H₀ and w

Near-term future

- There are 4 additional lens systems that nearly have B1608-quality data sets
- We're systematically acquiring data and will do similar analysis
- Each lens provides an independent measurement (unlike, e.g., supernovae) so we can test for internal systematics

0% scatter due to systematics

- 19 June 2012

Near-term future

Simulations from Sherry Suyu

Near-term future

Mid-to-long-term future

Coe & Moustakas 2009

How to combine multiple data sets

Bayesian Analysis

Denote $\boldsymbol{\pi} = \{H_0, \Omega_{\mathrm{m}}, \Omega_{\Lambda}, w\}$ (cosmological parameters) $\boldsymbol{\xi} = \{\boldsymbol{\pi}, \boldsymbol{\nu}\}$ (all model parameters)

Posterior Probability Distribution: $P(\boldsymbol{\pi} | \boldsymbol{d}_{ACS}, \boldsymbol{\Delta} t, \sigma) = \int d\boldsymbol{\nu} P(\boldsymbol{\xi} | \boldsymbol{d}_{ACS}, \boldsymbol{\Delta} t, \sigma)$ where $P(\boldsymbol{\xi} | \boldsymbol{d}_{ACS}, \boldsymbol{\Delta} t, \sigma) \propto \underbrace{P(\boldsymbol{d}_{ACS} | \boldsymbol{\xi}) P(\boldsymbol{\Delta} t | \boldsymbol{\xi}) P(\sigma | \boldsymbol{\xi}) P(\boldsymbol{\xi})}_{\text{Likelihood}}$

Our new approach for SHARP: Use Keck adaptive optics imaging

- Use Keck adaptive optics imaging of lens systems to search for both luminous and dark substructures
- Get resolution comparable to or better than HST, while using a mirror that has 16 times the collecting area
 - especially good for red objects that are faint at optical wavelengths

© Paul Hirst 2006

$$\theta \sim \lambda / D$$

SHARP Logistics

- Focus on systems with 4 lensed images or prominent arcs/rings
- For AO, need bright (R<17) tip-tilt star within ~60 arcsec
 - restricts size of available sample
- Ultimate goal for depth of AO imaging: ~3-4 hours integration time per target
 - enables search for substructure less massive than LMC/ SMC
- Goal for sample size: ~20 systems

An analogy

An analogy

