High resolution near infrared capability at Gemini-N → PRVS reborn at a fraction of the cost!!

Based on the growing symbiosis between Gemini-N and CFHT as spearheaded by GRACES, we propose an even more exciting collaboration with near infrared fiber feed from Gemini-N to the high resolution echelle spectro-polarimeter, SPIRou at CFHT. This will provide Gemini users similar high-res NIR spectroscopy capabilities as PRVS but at a fraction of the cost. The significant benefits to both observatories as listed below make this a win-win case!

- Simultaneous wavelength coverage: 0.95-2.35 μm (YJHK wavebands)
- Resolving power : 75,000
- RV accuracy <1m/s
- S/N=119, J=12
- Sensitivity: H=14, I=10, 30 minutes.
- Achromatic polarimeter, <1% x-talk
- Zeeman splitting scales as λ 2
- Wide A coverage + polarimeter key to mitigate/calibrate jitter noise

What is SPIRou @ CFHT?

The next generation high-resolution, near-infrared spectro-polarimeter at CFHT (first light ~ Jan 2016)

- High resolution near infrared capability at Gemini-N

SPIRou With a NIR Fiber Feed From Gemini

<table>
<thead>
<tr>
<th>Model</th>
<th>CFHST + Gemini-N</th>
<th>Gemini-S + Gemini-N</th>
<th>Gemini-S + Gemini-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achromatic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Faint Object</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chromatic</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>High Stability</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Polarimetry</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>T.L.I.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Post at 6x5 Port</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Additional science opportunity for SPIRou with Gemini’s 8m aperture

Feeding SPIRou from Gemini yields a third dimension to the SPIRou science case, enhancing the research opportunities for both the CFHT and Gemini communities

- Polarization + K-band mode
- Embedded magnetic sources
- High resolution + stability mode
- Planet search
- Faint Object Mode
- High-z targets, exo-planet physics, etc.

What is SPIRou @ CFHT?

The combination of SPIRou on CFHT (large surveys) and SPIRou on Gemini (large aperture) is powerful and would be unique in astronomy

- SPIRou on Gemini-N is comparable to PHOENIX on Gemini-S except SPIRou offers a huge gain via X-dispersion
- The cost of PRVS prior to its cancellation was ~$13 M - for a fraction of that cost it will be possible to pursue much of the PRVS science case within a few years except R=40K (vs. 70K) and no high stability capability for exo-planet RV searches (CFHT mode)

Exciting science with SPIRou at CFHT

How do stars/planets form and evolve?

- What is the role of magnetic field, especially in young embedded stars?
- What is the prevalence of exoplanetary systems?
- What fraction of M dwarfs host habitable planets?
- What are the characteristics of these exo-earth systems?

Where from here?

- Do you think pursuing a CFHT/Gemini partnership in the development and operation of SPIRou is worthwhile?
- What additional opportunities and challenges do you see in building such a SPIRou partnership?
- If you are interested in exploring this unique initiative, convey this to rep’s from Gemini (including the STAC) and CFHT during this meeting...

For details contact: Doug Simons (simons@cfht.hawaii.edu), Karun Thanjavur (karun@cfht.hawaii.edu)

What Science can SPIRou Do When Fiber-Fed From Gemini?

<table>
<thead>
<tr>
<th>Science topic</th>
<th>Gemini-Fed SPIRou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planetary atmospheres</td>
<td>Chemical composition, dynamics & physics of solar system planetary atmospheres (venus, mars, etc.)</td>
</tr>
<tr>
<td>Exo-planetary atmospheres</td>
<td>Measurements of exo-planetary atmospheric composition using Rosssiter Effect on transiting exo-planets</td>
</tr>
<tr>
<td>Brown dwarf spectroscopy</td>
<td>Atmospheric spectroscopy to define BD models (mass, gravity, “weather”), doppler imaging of BD surface</td>
</tr>
<tr>
<td>Low-mass spectroscopic binaries</td>
<td>Fraction of spectroscopic M-L binaries, mass ratios & orbital parameters</td>
</tr>
<tr>
<td>Rotational velocities of young stars and low-mass stars</td>
<td>Distribution of Vini in young clusters and low mass stars (M, L, T dwarfs)</td>
</tr>
<tr>
<td>Stellar magnetic fields</td>
<td>High sensitivity measurements of magnetic fields using Zeeman splitting</td>
</tr>
<tr>
<td>Astro-seismology</td>
<td>Activity of stars across the main sequence</td>
</tr>
<tr>
<td>Jet & shock physics</td>
<td>Use [FeII] lines to measure extinction, excitation, electron density across line profiles</td>
</tr>
<tr>
<td>Masses & ages of nuclear stellar clusters in spiral galaxies</td>
<td>The role of nuclear stellar clusters in defining the properties of the host galaxy</td>
</tr>
<tr>
<td>Time Evolved Fine Structure Constant</td>
<td>Extend measurements to high-z targets</td>
</tr>
<tr>
<td>Absorption lines against GRBs</td>
<td>Follow up spectroscopy against bright GRBs to measure gas and metallicities at high red shifts. Measure lines of [FeII], [FeIII], [OII], [NII] etc. for high-z targets</td>
</tr>
</tbody>
</table>

Key Project Milestones for SPIRou

- A key milestone is the November 2012 CFHT Board meeting, when a go/no-go decision will likely be made before negotiating the Phase C contracts and making major purchases (optics, H4RG)
- Ideally a preliminary agreement between Gemini and CFHT toward the joint funding of this instrument should be in place by the end of this year...

CFHT Milestones

Oct Nov Dec Jan Feb Mar Apr May June

Gemini Milestones

- STAC Board
- SAC Board

Additional text

- D. Simons, D. Devost, G. Barrick, K. Thanjavur, and the international SPIRou collaboration
- simons@cfht.hawaii.edu, karun@cfht.hawaii.edu

What is SPIRou?

Envisioned SPIRou performance and operational modes at CFHT vs Gemini (reasonable replacement for PRVS)

- Resolving power : 75,000
- RV accuracy <1m/s
- S/N=119, J=12
- Sensitivity: H=14, I=10, 30 minutes.
- Achromatic polarimeter, <1% x-talk
- Zeeman splitting scales as λ^2
- Wide A coverage + polarimeter key to mitigate/calibrate jitter noise

What is SPIRou @ CFHT?

Simultaneous wavelength coverage: 0.95-2.35 μm (YJHK wavebands)

Envisioned SPIRou performance and operational modes at CFHT vs Gemini

- Resolving power : 75,000
- RV accuracy <1m/s
- S/N=119, J=12
- Sensitivity: H=14, I=10, 30 minutes.
- Achromatic polarimeter, <1% x-talk
- Zeeman splitting scales as λ^2
- Wide A coverage + polarimeter key to mitigate/calibrate jitter noise

Exciting science with SPIRou at CFHT

- How do stars/planets form and evolve?
- What is the role of magnetic field, especially in young embedded stars?
- What is the prevalence of exoplanetary systems?
- What fraction of M dwarfs host habitable planets?
- What are the characteristics of these exo-earth systems?