I. Introduction
The AGN unified model (Antonucci 1993; Urry & Padovani 1995) explains the observed differences between Type I and Type II galaxies (including Seyferts) as solely due to orientation. Type I objects are observed nearly pole on, allowing observations of both the inner broad emission line region (BLR) and the narrow-line region (NLR). Type II objects are observed nearly edge on where the BLR is obscured due to an optically and geometrically thick dusty torus. The torus dust grains absorb ultraviolet/optical photons from the central engine and reradiate them with a peak near mid-IR wavelengths (10-20 μm).

However, observations suggest that the thermal emission in Seyferts is complex and may not be adequately addressed by a simple Unified Model. Ramos-Almeida, C. et al. (2009, 2011) suggest that the classification of Seyfert as Type I or II depend more on the intrinsic properties of the torus rather than solely on its inclination towards us as would be the case in a strict unification theme. They show that Seyfert Type II likely contain tori with larger covering fractions than Seyfert Type I resulting in a higher chance of an obscured line-of-sight to the BLR characteristic of Type I. Another intriguing tentative result is that the covering factor decreases with increasing AGN luminosity (Alonso-Herrero et al. 2011), based on a combination of spectroscopy and SED fitting. In addition, ongoing observations using T-ReCS and MICHELLE have shown that the covering fraction of Seyfert II galaxies are also larger than that of Seyfert I’s on larger scales with Type II Seyferts typically containing more dust in the form of extended mid-IR thermal emission. The AGN unified model (Padovani 1995) explains the observed differences between Type I and Type II galaxies (including Seyferts) as solely due to orientation. Type I objects are observed nearly pole on, allowing observations of both the inner broad emission line region (BLR) and the narrow-line region (NLR). Type II objects are observed nearly edge on where the BLR is obscured due to an optically and geometrically thick dusty torus. The torus dust grains absorb ultraviolet/optical photons from the central engine and reradiate them with a peak near mid-IR wavelengths (10-20 μm).

However, observations suggest that the thermal emission in Seyferts is complex and may not be adequately addressed by a simple Unified Model. Ramos-Almeida, C. et al. (2009, 2011) suggest that the classification of Seyfert as Type I or II depend more on the intrinsic properties of the torus rather than solely on its inclination towards us as would be the case in a strict unification theme. They show that Seyfert Type II likely contain tori with larger covering fractions than Seyfert Type I resulting in a higher chance of an obscured line-of-sight to the BLR characteristic of Type I. Another intriguing tentative result is that the covering factor decreases with increasing AGN luminosity (Alonso-Herrero et al. 2011), based on a combination of spectroscopy and SED fitting. In addition, ongoing observations using T-ReCS and MICHELLE have shown that the covering fraction of Seyfert II galaxies are also larger than that of Seyfert I’s on larger scales with Type II Seyferts typically containing more dust in the form of extended mid-IR thermal emission.

III. Narrow Line Region Dust
Thermal emission in Seyferts from the central engine is not limited to the torus. Dust in the NLR can also play an important role, though is rarely the dominant emission mechanism (observations suggest typically 10-40%). Examples of such emission in Seyferts have been seen in NGC 4151 (Radomski et al. 2003) and Circinus (Packham et al. 2005). Further examples include the galaxies NGC 4388 and NGC 1386 seen below where the mid-IR NLR align with the NLR as detected in [OIII]. Observations have also shown that using the [OIII] luminosity as a proxy for the luminosity of the central AGN one can reliably predict whether an extended NLR is observable given typical dust grain properties and temperatures at the distance/resolution of the target source.

IV. Star Formation
Star formation on circumnuclear scales can dominate the thermal emission of Seyferts and even completely obscure the torus emission in some cases. Below are two example star formation regions observed in our survey NGC 7582 and NGC 4945. Multi-wavelength observations confirm the star formation component of the extended mid-IR emission. In addition, the extent of such emission is far beyond that possible for central heating due to the AGN as one might expect in a dusty NLR. In NGC 7582 the unresolved source still dominates the total emission while in NGC 4945 the unresolved torus represents no more than 10% (±10%) of the peak emission of the galaxy and is likely completely obscured by the central star formation.

V. Summary
The thermal emission associated with Seyferts is complex with multiple emission mechanisms including emission from the central torus, dusty NLR, and central star formation regions. Ongoing observations using T-ReCS and MICHELLE as part of the CanariCam AGN Science team are beginning to build a large enough survey for a statistically significant sample of Seyferts showing possible differences in the circumnuclear environment and torus structure between Type I and II Seyferts. Future observations using the mid-IR camera/spectrometer CanariCam on the GTC will be used to complete this survey.